
Exascale Co-Design Center for
Materials in Extreme Environments!

 
ASCR Co-Design Project Review  

Livermore, CA 
4 December 2013  

"This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under"
Contract DE-AC52-07NA27344, by Los Alamos National Laboratory under Contract DE-AC52-06NA25396 and supported by the DOE"

Office of Advanced Scientific Computing Research. LLNL-PRES-647492"

2"

ExMatEx Co-Design Project Goal!
•  Our goal is to establish the interrelationship

between hardware, middleware (software stack),
programming models, and algorithms required to
enable a productive exascale environment for
multiphysics simulations of materials in extreme
mechanical and radiation environments."

•  We will exploit, rather than avoid, the greatly
increased levels of concurrency, heterogeneity,
and flop/byte ratios on the upcoming exascale
platforms. "

•  This task-based approach leverages the extensive concurrency and
heterogeneity expected at exascale while enabling fault tolerance within
applications. "

•  The programming models and approaches developed to achieve this will be
broadly applicable to a variety of multiscale, multiphysics applications,
including astrophysics, climate and weather prediction, structural engineering,
plasma physics, and radiation hydrodynamics."

3"

(1) Demonstrating and delivering a prototype scale-bridging
materials science application based upon adaptive
physics refinement."

"
"
(2)  Identifying the requirements for the exascale ecosystem

that are necessary to perform computational materials
science simulations (both single- and multi-scale)."

All ExMatEx activities are focused on the two
ultimate objectives.!

4"

“With the advent of exascale computing, the possibility exists to
achieve predictive capabilities to manipulate microstructure and

interfaces, at the grain scale, to enable the design and
development of extreme environment tolerant advanced materials.”

– Scientific Grand Challenges for National Security report!

Understanding the response of materials to extreme
conditions underpins many DOE missions.!

5"

“First, the stress also serves as a direct test of supercomputer simulations that model how metals
behave. The better the data that goes in, the more reliable are the results that come out. That's
important in trying to model the exact behavior of metals under stress, say the crash of a car or
the impact of a bullet into armor. And it's especially important for the Office of Science, since
several of its labs are home to world-class supercomputers, which researchers are using for
everything from simulating the 'subatomic soup' of the early universe to modeling air turbulence
and thereby improving airplane performance."

Those better metal models could, in turn, lead to the design of even stronger and more
durable materials. And those materials might come in handy for technologies that operate
in extreme environments, such as shielding for satellites and space probes. They'll likely
be useful in more everyday applications too.”!

Nov 2013!

6"

“…if you look at where cracks develop in metals they always develop at
the grain boundary. If you look at where corrosion occurs, it’s at a grain
boundary. If you look at the effect on materials of aging, you gather a lot of
chemical contaminants at the grain boundary.” – Donald Cook, NNSA
Deputy Administrator for Defense Programs (Physics Today, Nov 2013)"

Materials dynamics issues are also important to
NNSA’s weapons mission.!

7"

Code: Qbox/
LATTE"
"
Motif: Particles
and
wavefunctions,
plane wave
DFT,
ScaLAPACK,
BLACS, and
custom parallel
3D FFTs"
"
Prog. Model:
MPI + CUBLAS/
CUDA"

Code: SPaSM/
ddcMD/CoMD"
"
Motif: Particles,
explicit time
integration,
neighbor and
linked lists,
dynamic load
balancing, parity
error recovery,
and in situ
visualization"
"
Prog. Model:
MPI + Threads"

Code: SEAKMC"
"
"
Motif: Particles
and defects,
explicit time
integration,
neighbor and
linked lists, and
in situ
visualization"
"
Prog. Model:
MPI + Threads"

Code: AMPE/
CoGL"
"
"
Motif: Regular
and adaptive
grids, implicit
time integration,
real-space and
spectral
methods,
complex order
parameter"
"
Prog. Model:
MPI"

Code: ParaDis"
"
"
Motif:
“segments”"
Regular mesh,
implicit time
integration, fast
multipole
method"
"
Prog. Model:
MPI"

Code: VP-FFT"
"
"
Motif: Regular
grids, tensor
arithmatic,
meshless image
processing,
implicit time
integration, 3D
FFTs."
"
Prog. Model:
MPI + Threads"

Code: ALE3D/
LULESH"
"
Motif: Regular
and irregular
grids, explicit
and implicit time
integration."
"
Prog. Model:
MPI + Threads"
"

Ab-initio! MD! Long-time! Phase Field! Dislocation! Crystal! Continuum!
Inter-atomic
forces, EOS"

Defects and
interfaces,
nucleation!

Defects and
defect

structures!

Meso-scale
multi-phase

evolution!

Meso-scale
strength!

Meso-scale
material

response"

Macro-scale
material

response"

Seven pillars of computational materials science!

8"

Code: Qbox/
LATTE"
"
Motif: Particles
and
wavefunctions,
plane wave
DFT,
ScaLAPACK,
BLACS, and
custom parallel
3D FFTs"
"
Prog. Model:
MPI + CUBLAS/
CUDA"

Code: SPaSM/
ddcMD/CoMD"
"
Motif: Particles,
explicit time
integration,
neighbor and
linked lists,
dynamic load
balancing, parity
error recovery,
and in situ
visualization"
"
Prog. Model:
MPI + Threads"

Code: SEAKMC"
"
"
Motif: Particles
and defects,
explicit time
integration,
neighbor and
linked lists, and
in situ
visualization"
"
Prog. Model:
MPI + Threads"

Code: AMPE/
CoGL"
"
"
Motif: Regular
and adaptive
grids, implicit
time integration,
real-space and
spectral
methods,
complex order
parameter"
"
Prog. Model:
MPI"

Code: ParaDis"
"
"
Motif:
“segments”"
Regular mesh,
implicit time
integration, fast
multipole
method"
"
Prog. Model:
MPI"

Code: VP-FFT"
"
"
Motif: Regular
grids, tensor
arithmatic,
meshless image
processing,
implicit time
integration, 3D
FFTs."
"
Prog. Model:
MPI + Threads"

Code: ALE3D/
LULESH"
"
Motif: Regular
and irregular
grids, explicit
and implicit time
integration."
"
Prog. Model:
MPI + Threads"
"

Ab-initio! MD! Long-time! Phase Field! Dislocation! Crystal! Continuum!
Inter-atomic
forces, EOS"

Defects and
interfaces,
nucleation!

Defects and
defect

structures!

Meso-scale
multi-phase

evolution!

Meso-scale
strength!

Meso-scale
material

response"

Macro-scale
material

response"

Seven pillars of computational materials science!

9"

Code: Qbox/
LATTE"
"
Motif: Particles
and
wavefunctions,
plane wave
DFT,
ScaLAPACK,
BLACS, and
custom parallel
3D FFTs"
"
Prog. Model:
MPI + CUBLAS/
CUDA"

Code: SPaSM/
ddcMD/CoMD"
"
Motif: Particles,
explicit time
integration,
neighbor and
linked lists,
dynamic load
balancing, parity
error recovery,
and in situ
visualization"
"
Prog. Model:
MPI + Threads"

Code: SEAKMC"
"
"
Motif: Particles
and defects,
explicit time
integration,
neighbor and
linked lists, and
in situ
visualization"
"
Prog. Model:
MPI + Threads"

Code: AMPE/
CoGL"
"
"
Motif: Regular
and adaptive
grids, implicit
time integration,
real-space and
spectral
methods,
complex order
parameter"
"
Prog. Model:
MPI"

Code: ParaDis"
"
"
Motif:
“segments”"
Regular mesh,
implicit time
integration, fast
multipole
method"
"
Prog. Model:
MPI"

Code: VP-FFT"
"
"
Motif: Regular
grids, tensor
arithmatic,
meshless image
processing,
implicit time
integration, 3D
FFTs."
"
Prog. Model:
MPI + Threads"

Code: ALE3D/
LULESH"
"
Motif: Regular
and irregular
grids, explicit
and implicit time
integration."
"
Prog. Model:
MPI + Threads"
"

Ab-initio! MD! Long-time! Phase Field! Dislocation! Crystal! Continuum!
Inter-atomic
forces, EOS"

Defects and
interfaces,
nucleation!

Defects and
defect

structures!

Meso-scale
multi-phase

evolution!

Meso-scale
strength!

Meso-scale
material

response"

Macro-scale
material

response"

Seven pillars of computational materials science!

10"

Resolu'on:	
 1012	
 zones	
 (10	
 cm	
 cube)	

Simula'on	
 'me:	
 100	
 µsec	
 (105	
 steps)	

Strain	
 rate:	
 106	
 /sec	

Strain:	
 1-­‐3	

	

Using	
 Small	
 Strain	
 Crystal	
 Plas'city	
 Model:	

~104	
 sec	
 (~3	
 h)	
 wall	
 clock	
 on	
 109	
 cores	

	

Large	
 Strain	
 Crystal	
 Plas'city	
 Model:	
 10x	

	

Twinning	
 /	
 Scale	
 Bridging	
 Model:	
 100x	

Use Case: Shaped-charge jets, breakup and 3D effects
(e.g. spinning) require crystal plasticity and anisotropy!

slow	
 glide	

ALE3D	
 simula'on	
 of	
 shaped-­‐charge	
 jet	
 	

(Rose	
 McCallen,	
 LLNL)	
 	

Δε ≥1

Δε = 0.15

Crystal	
 plas'city	
 simula'on	
 of	
 high	
 rate	

deforma'on	
 (Nathan	
 Barton,	
 LLNL)	

Model:	
 Small	
 Strain	
 Crystal	
 Plas'city	

Number	
 Zones:	
 107	
 (100	
 micron	
 cube)	

Simula'on	
 'me:	
 10	
 µsec	
 (104	
 steps)	

Strain	
 rate:	
 106	
 /sec	

Strain:	
 0.15	

Wall	
 Clock:	
 1	
 day	
 on	
 1/10	
 Cielo	

What we
can do
today:!

What is required:!

11"

•  A coarse-scale model (e.g. FEM) calls a lower length-scale model (e.g.
polycrystal plasticity) and stores the response obtained for a given
microstructure, each time this model is interrogated."

Adaptive sampling techniques have been demonstrated
under the LLNL “Petascale Initiative” LDRD.!

N. R. Barton, J. Knap, A. Arsenlis, R. Becker, R. D. Hornung, and D. R. Jefferson.
Embedded polycrystal plasticity and adaptive sampling. Int. J. Plast. 24, 242-266 (2008)"

N. R. Barton et.al. A call to arms for task parallelism in multi-scale
materials modeling. Int. J. Numer. Meth. Engng 86, 744–764 (2011)"

•  A microstructure-
response database is
thus populated."

•  The fine-scale
workload varies
dramatically over the
coarse-scale spatial
and temporal domain."

•  This requires dynamic
workload balancing in
a task parallel context."

12"

Use case: competing dislocation, twinning, and/or phase
transitions under shock loading!

1012 photons/pulse"

Linac Coherent Light Source (LCLS)
setup for shock experiments"

Despina Milathianaki et al, Science 342, 220 (11 October 2013)"

Ultrabright X-ray sources at BES user facilities such as LCLS and APS
are providing unprecedented spatio-temporal resolution."

13"

Initial shock experiments at LCLS exhibit excellent
agreement with MD simulation predictions for Cu(111)!

A peak compressive strain ~18% is reached before the onset of plastic flow"

Milathianaki et al, Science 342, 220 (2013)"

Dupont and Germann, Phys Rev B 86, 134111 (2012) "
“…the yield stress of the material is in excellent agreement with MD simulations
in single crystal Cu at a strain rate of (109 s−1) and for uniaxial compression along
the [111] direction, thus confirming the considerably higher yield stress values
predicted by simulations compared with those extracted from nanosecond shock
experiments on samples of >>1-µm thickness.”"

14"

•  Direct non-equilibrium molecular dynamics simulation matching time
and length scales of planned LCLS experiments "
–  ~1-2 µm thick nanocrystalline samples (Cu, Ti, Fe, Ta), ~400 nm grain size!
–  Laser drive: 10-20 ps rise time, 150 ps duration!
–  50 fs duration X-ray “snapshot” interrogation pulses at 10 ps intervals!

Use case: competing dislocation, twinning, and/or phase
transitions under shock loading!

NEMD
simulation
of shocked"
nc-Ta on
Cielito"

(R. Ravelo,
LANL/
UTEP) "

10x	
 system	
 size	
 (1011	
 atoms)	

1	
 µm	
 x	
 1	
 µm	
 x	
 2	
 µm,	
 400	
 nm	
 grain	
 size	

	

More	
 accurate	
 MGPT	
 poten'al:	
 100x	
 	

3	
 weeks	
 on	
 exascale	
 system	

EAM	
 poten'al,	
 200	
 nm	
 grain	
 size	

1010	
 atoms	
 (0.5	
 µm	
 x	
 0.5	
 µm	
 x	
 1.5	
 µm)	

Simula'on	
 'me:	
 4	
 nsec	
 (106	
 steps)	

Wall	
 clock:	
 2	
 days	
 on	
 Mira	
 (½	
 Sequoia)	

What we can do today (INCITE):!
What is required:!

15"

Our co-design process must be adaptive, iterative, and
lightweight – i.e., agile.!

Preparation:!
Science and Mission"
Stakeholder Buy-in"
Assemble Team"
Implementation Plan"
Development Plan"

Cycle Artifacts:!
 R&D Backlog"
 Algorithm and"

 Model Implementation"
 Proxy Applications"

 Architecture Evaluation"

Co-Design
Agile

Development
Cycle"Incorporated

Design
Elements"

Algorithm
Development"

Trade-off
Analysis"

Impact
Feedback"

Code
Design"

Code
Implementation"

Release to
Exascale

Community"

Release n"

Domain
Science:"

Domain Workload"
Physical Models"

Algorithms"
Simulations"

Team Roles:!
Cycle Master: Co-design PI"
 Project Team: Labs, Univ’s"

 Stakeholders: ASCR, ASC, Vendors"
 Customers: Scientists, HW+SW

Developers"

Exascale Community:!
Release Artifacts:!

HW Requirements"
SW Constraints"

Proxy Applications
Documentation"

"
Software Development:!
ASCR X-stack, ASC CSSE

Data/Analysis"
"

Hardware Development:
Vendors, esp. Fast Forward

& Design Forward"

16"

Management Plan: Interconnected Task Areas!

CM	

•  Milestones have been organized into 9
interconnected task areas, each of
which operates an agile sub-cycle:"

"

PA	

TA	

MS	

VS	

ST	

RT	

PM	

AD	

–  CM:	
 Center	
 management	

–  PA:	
 Proxy	
 applica'ons	

–  AD:	
 Algorithm	
 development	

and	
 uncertainty	

quan'fica'on	

–  PM:	
 Programming	
 models	

–  RT:	
 Resource/task	

management	

–  ST:	
 Scalable	
 tool	

development	

–  MS:	
 Performance	
 models	

and	
 simulators	

–  TA:	
 Tradeoff	
 analysis	
 and	

simula'on	

–  VS:	
 Vendor	
 and	
 sobware	

(ecosystem)	
 engagement	

17"

Applica1ons	
 &	

Algorithms	

Programming	
 &	
 Systemware	
 Hardware-­‐interfacing	

Tools	

PA:	
 Proxy	

applica'ons	

AD:	
 Algorithm	

development	
 and	

uncertainty	

quan'fica'on	

PM:	
 Programming	
 models	

RT:	
 Resource/task	
 management	

ST:	
 Scalable	
 tool	

development	

MS:	
 Performance	

models	
 and	
 simulators	

TA:	
 Tradeoff	
 analysis	

and	
 simula'on	

Our task areas map to the 3 partitions!

Exascale	
 Co-­‐Design	
 Center	
 for	
 Materials	
 in	

Extreme	
 Environments	

Center	
 Director:	
 Tim	
 Germann	
 (LANL)	
 	

Deputy	
 Director:	
 Jim	
 Belak	
 (LLNL)	

)	

Applied	
 Math	

Lead:	
 Milo	
 Dorr	
 (LLNL)	

	

	

V&V+UQ	

Lead:	
 Houman	
 Owhadi	

(CalTech)	

Mike	
 McKerns	
 (CalTech)	

Daniel	
 Orlikowski	
 (LLNL)	

Scale-­‐Bridging	

Algorithms	

Lead:	
 Milo	
 Dorr	
 (LLNL)	

Kipton	
 Barros*	
 (LANL)	

Nathan	
 Barton	
 (LLNL)	

Dana	
 Knoll	
 (LANL)	

Computa1onal	
 Materials	

Science	
 	

Lead:	
 Turab	
 Lookman	

(LANL)	

High	
 Strain-­‐Rate	

Applica1ons	

Co-­‐Leads:	
 Nathan	
 Barton	

(LLNL)	

Ricardo	
 Lebensohn	
 (LANL)	

	

Enrique	
 Mar'nez*	
 (LANL)	

Irradia1on	
 Applica1ons	

Lead:	
 Roger	
 Stoller	
 (ORNL)	
 	

Danny	
 Perez	
 (LANL)	

Art	
 Voter	
 (LANL)	

Computer	
 Science	

Lead:	
 Allen	
 McPherson	
 (LANL)	

Co-­‐lead:	
 Scoh	
 Futral	
 (LLNL)	

Data/Resource	
 Sharing	

Lead:	
 Chris	
 Mitchell	

(LANL)	

Chris	
 Sewell	
 (LANL)	

Programming	
 Models	

Lead:	
 Allen	
 McPherson	

(LANL)	

Pat	
 Hanrahan	
 (Stanford)	

Jeff	
 Keasler	
 (LLNL)	

Crystal	
 Lemire**	
 (Stanford)	

Jamal	
 Mohd-­‐Yusof	
 (LANL)	

Performance	
 Modeling	

Lead:	
 Jeff	
 Veher	
 (ORNL)	

Si	
 Hammond	
 (SNL)	

Arun	
 Rodrigues	
 (SNL)	

Jeremy	
 Meredith	
 (ORNL)	

Analysis	
 Tools	
 At	
 Scale	

Lead:	
 Mar'n	
 Schulz	
 (LLNL)	

Ignacio	
 Laguna*	
 (LLNL)	

Barry	
 Rountree	
 (LLNL)	
 Sy
st
em

	
 S
oM

w
ar
e	

an

d	

Ve

nd
or
	
 E
ng
ag
em

en
t	

Jim
	
 B
el
ak
	
 a
nd

	
 M
ar
'n

	
 S
ch
ul
z	
 (
LL
N
L)
	

Ti
m
	
 G
er
m
an
n	

an
d	

Al
le
n	

M
cP
he

rs
on

	
 (L
AN

L)
	

X-­‐stack	
 Projects	

SC/ASCR	

Advanced	
 Algorithms	
 &	
 Co-­‐design	
 “Code-­‐Team”	

Lead:	
 David	
 Richards	
 (LLNL) 	
 	
 	
 	
 Ian	
 Karlin,	
 Frankie	
 Li*	
 (LLNL);	
 Sue	
 Mniszewski,	
 Jamal	
 Mohd-­‐Yusof	
 (LANL)	

Fast	
 Forward	
 Projects	

SciDAC	
 Projects	

Design	
 Forward	
 Projects	

NNSA/ASC	
 	

Co-­‐design	

Hardware	

Vendors	

*postdoc	
 	
 	
 **student	

19"

•  All-Hands meetings with external partners and stakeholders"
–  August 24-26, 2011 ! !Santa Fe, NM!
–  May 30 – June 1, 2012 !Pacific Grove, CA!
–  March 12-14, 2013 ! !Santa Ana Pueblo, NM!
–  November 4-6, 2013 ! !Livermore, CA!

•  Biweekly (Tues pm) team meetings at LANL and LLNL"
•  Biweekly (Thu am) proxy app and"
 CS task area telecons"
•  Monthly (Thu pm) task lead telecon"
•  New & improved web site"

–  http://exmatex.org!
•  Participation in FF and X-stack"
 telecons, reviews, and all-hands"
 meetings"

Project Communication!

20"

Co-Design Project Roadmap (May 2011)!

Focus Area! Level 1!
Level 2 milestones!

Year 1! Year 2! Year 3! Year 4! Year 5!
Proxy apps" Y1: Release

initial proxy
application suite!

1.1 Single-scale
SPMD and 2-scale
MPMD proxy apps"

2.4 Release
analysis tool
extensions and
proxy apps"

3.3 Release
analysis tool
extensions and
proxy apps"

4.3 Scale-bridging
MPMD proxy app"

5.4 Deliver open-
source exascale
materials proxy
applications suite"

Scale-
bridging
algorithms"

Y4: Demonstrate
scale-bridging
on 10+ PF
platform!

1.4 Assess and
extend scale-
bridging algorithms"

2.3 Assess data/
resource sharing
requirements"

3.4 Develop stable,
accurate, adaptive
macro/meso scale-
bridging"

4.1 Demonstrate
data/resource
sharing at 10 PF"

Programming
models"

2.2 Identify critical
features of
programming
models"

3.1 Node-level
DSL to coordinate
execution and data
exchange"

4.4 Assess and
deliver
requirements for
task/thread
scheduler"

P3R analysis
and
optimization"

1.2 Evaluate initial
single-scale and
scale-bridging proxy
apps using ASPEN,
SST, and scalable
tools"

2.1 SST/GREMLIN
layer"

3.2 Develop OUQ
V&V framework for
multiscale"

3.5 Evaluate power
management
strategies"

"

4.2 Develop and
assess fault
tolerance
strategies and
provide API
requirements to
SW partners"

5.1 Deliver
documented
requirements to
HW vendors"

5.2 Deliver
documented
constraints to SW
partners"

Other" Y5: Deliver
integrated
design
specification for
exascale
materials @
extremes!

1.3 Establish
liaisons and
engagement
strategies with
exascale HW and
SW ecosystem"

5.3 Deliver
prototype of limited
scale-bridging
materials science
capability"

21"

Management Plan – Year 1!
Year L1

Milestone Supporting Capabilities / L2 Milestones Contributing
L3 tasks

1 Establish co-
design cycle
elements,
and release
initial proxy
app suite

1.1 Create initial suite of single-scale SPMD and 2-scale MPMD proxy apps PA

1.2 Evaluate proxy apps using ASPEN, SST, and scalable tools MS, TA
1.3 Establish liaisons and engagement strategies with exascale software
community and vendor partnership(s)

VS

1.4 Assess and extend scale-bridging algorithms AD

In	
 Y1	
 we	
 established	
 the	
 necessary	

components	
 of	
 the	
 co-­‐design	
 cycle	
 by	

developing	
 representa1ons:	

•  of	
 the	
 applica1ons	
 to	
 the	
 hardware	

through	
 proxy	
 apps,	
 and	
 	

•  of	
 the	
 hardware	
 to	
 the	
 applica1ons	

through	
 analysis	
 tools.	
 	

PA	

TA	

MS	

VS	

ST	

RT	

PM	

AD	

CM	

22"

•  Single-scale proxies primarily address
node-level SPMD issues:"
–  Microscale: CoMD!

»  Molecular dynamics; particle-based"
–  Mesoscale: VPFFT, CoGL!

»  Crystal plasticity, phase field; regular
Eulerian grids (Fourier- & real-space
alternatives)"

–  Macroscale: LULESH!
»  Shock hydro; unstructured Lagrangian

mesh"
•  CoMD and LULESH are two of the small

set (~6) of compact applications that
several of the vendor FastForward
teams are focusing on as part of their
projects."

•  Several hackathons and deep dives
have enhanced this collaboration."

Our focus during the first 18 months was establishing
the initial suite of single-scale SPMD proxy apps. !

23"

• Proxy applications are a primary mechanism for
collaboration between hardware architects, computer
scientists, and domain scientists

• Proxy apps representing the workflow have been an
effective mechanism for:
–  Identifying language/compiler weaknesses
–  Indicating bottlenecks that more complex computational

workflows may have (vs. conventional benchmarks)
– Providing tractable application testbeds for new approaches to

resilience, OS/runtime/execution models, power management,
…

– Evaluating alternative programming models, e.g. task-based
execution models & runtimes

• Open-source Mantevo suite
– Sandia National Laboratories
 + AWE, LANL, LLNL, NVIDIA

Proxy applications are central to co-design!

24"

Management Plan – Years 2 and 3!
Yr Supporting Capabilities / L2 Milestones L3 areas
2 2.1 Use SST simulation and GREMLIN interface layer to mimic exascale

machine behavior on petascale platforms
PM, ST,
MS

2.2 Identify critical features of programming models PM
2.3 Assess & deliver data/resource sharing requirements, both for scale-
bridging and in situ analysis/viz, to exascale SW partners

PM, ST

2.4 Release latest instantiation of ASPEN/SST, GREMLIN, scalable tools
used for evaluation and proxy apps to exascale ecosystem

PA, TA

Yr Supporting Capabilities / L2 Milestones L3 areas

3 3.1 Deliver DSL at kernel level that schedules and coordinates the execution
and data interchange between scale-bridging kernels at the node level

PM

3.2 Develop OUQ V&V framework for hierarchical/multi-scale structures. AD, PM
3.3 Release latest instantiation of ASPEN/SST, GREMLIN, scalable tools
used for evaluation and proxy apps to exascale ecosystem

PM, TA

3.4 Develop stable accurate adaptive macro-mesoscale-bridging algorithm AD
3.5 Evaluate power management strategies with SPMD proxy apps and
provide node-level API requirements to vendor partners

PM, MS,
TA

In	
 Y2	
 we	
 execute	
 the	
 co-­‐design	
 op1miza1on	
 cycle.	

In	
 Y3	
 we	
 complete	
 the	
 second	
 18-­‐month	
 op1miza1on	
 cycle	

and	
 deliver	
 programming	
 model	
 and	
 OUQ	
 V&V	
 frameworks.	

PA	

TA	

MS	

VS	

ST	

RT	

PM	

AD	

CM	

PA	

TA	

MS	

VS	

ST	

RT	

PM	

AD	

CM	

25"

We have developed
several classes of
GREMLINS to
evaluate application-
level impacts and
strategies for:"
•  Power"
•  Thermal"
•  Resilience"

–  Fault injection!
•  Memory latency/

bandwidth"
–  Limiting resources!

•  Noise"
–  System jitter!

2.1) Use SST simulation and GREMLIN interface layer to
mimic exascale machine behavior on petascale platforms!

Details this afternoon from
Martin Schulz, Barry Rountree,

and Ignacio Laguna!

26"

2.2) Identify critical features of programming
models!

More this morning from David
Richards and Allen McPherson!

The single-scale proxy apps developed in Year 1, primarily CoMD and
LULESH, were used as the primary vehicle for the co-design process,
notably several “hackathons” with vendor and X-stack partners."
From these activities, and exploration of various node and component-
level programming models, several critical features were identified.
Namely, they need to enable the developer to:"

•  Express control of workflow beyond communicating serial processes"

•  Express information (e.g. data dependencies) for higher-level dynamic
control of workflow"

•  Express fine grain concurrency"

•  Express data locality / data layout"

•  Express asynchrony"

•  Express heterogeneity and hierarchy"

27"

•  “Top-down”"
–  We have developed an Adaptive Sampling

Proxy App (ASPA) that represents the fine-
scale query, database lookup, and kriging
interpolation steps."

–  LULESH (coarse-scale) and VPFFT (fine-
scale) proxies are coupled via ASPA to study
the workflow (e.g., speeds & feeds) for our
target application problems."

•  “Bottom-up”"
–  We have developed a tractable scale-bridging

proxy (CoHMM) that represents the basic
task-based modeling approach we are
targeting."

–  It is being used to evaluate task-based OS/
runtime requirements."

2.3) Assess & deliver data/resource sharing requirements, both for
scale-bridging and in situ analysis/viz, to exascale SW partners!

FSMs"

CSM"

Our work on scale-bridging has followed two complementary paths: "

More this morning from David
Richards and Allen McPherson!

28"

Tradeoff: re-use vs. re-computation of expensive fine-
scale model results!

On-demand fine
scale models"

CSM"
DB$"

Adaptive"
Sampler"

FSM"

Subdomain 1"

Subdomain 2"

FSM" FSM"

Node 1!

DB$"
Adaptive"
Sampler"

Subdomain N-1"

Subdomain N"

Node N/2!

29"

Tradeoff: re-use vs. re-computation of expensive fine-
scale model results!

DB"

On-demand fine
scale models"

CSM"
DB$"

Eventually
consistent
distributed
database"

Adaptive"
Sampler"

FSM"

Subdomain 1"

Subdomain 2"

FSM" FSM"

Node 1!

DB"

DB"

DB$"
Adaptive"
Sampler"

Subdomain N-1"

Subdomain N"

Node N/2!

30"

•  CoHMM presents the basic workflow
requirements of a scale-bridging
materials application."

•  A full fine scale model (FSM, e.g. a
crystal plasticity or molecular
dynamics model) is run for every zone
& time step of coarse scale model
(CSM, e.g. an ALE code)."

•  It is being used to assess basic
requirements for task-based runtime
systems. "

–  The original HMM* is limited by its
predictable, uniform workload pattern.!

–  Adaptive coarsening provides a more
dynamic and realistic workload.!

We are using the Heterogeneous Multiscale Method*
as a scale-bridging prototype!

..."

Deformation gradient"

*Xiantao Li and Weinan E, “Multiscale
modeling of the dynamics of solids at

finite temperature,” J. Mech. Phys.
Solids 53, 1650–1685 (2005)"

x"

31"

• Al McPherson and
Tim Germann, 2013
co-mentors"

• Focused on various
task-based
programming,
execution, and
runtime models"

• Heterogeneous
multiscale method
with adaptive
refinement and
coarsening"

Los Alamos IS&T Co-design Summer School!

•  Charm++"
•  CnC!
•  DART"
•  Habanero"
•  HPX"

•  Pathos"
•  Scioto!
•  Spark!
•  SWARM(+GA)"
•  Swift/T"

Execution models / runtime
systems which were evaluated:!

32"

2.3) Assess & deliver data/resource sharing requirements, both for
scale-bridging and in situ analysis/viz, to exascale SW partners!

System! Dimension! Adaptive! Database! Fault
Tolerant!

Status!

HPX" Bugs and lack of documentation. Triage it away." Abandoned"

Scioto" 1D, 2D" AMR, Kriging" redis" No" OK"

Pathos" 1D" Yes" No" Process" OK"

Intel CnC" 2D" No" No" No" OK"

Charm++" Synthetic benchmarks only. Evaluate load-balance." Eval. only"

Spark" 1D, 2D" AMR, Kriging" redis" CoMD atom" OK"

Mesos" Evaluated favorably. Installation issues." Eval. only"

Swift! 1D! No! No! Process! CoMD 1.0!

Erlang! 1D! No! No! Process! CoMD 1.0!

Scala! 1D! No! No! No! Simple MD!

“Cloud”! 1D! No! multiple! Process! CoMD 1.1!

We used the CoHMM proxy app to perform an initial evaluation
of runtime system requirements for our scale-bridging workload."

More this morning from Allen McPherson!

33"

•  Although we initially developed and applied these tools to ExMatEx proxy
applications for our own co-design tradeoff analysis, they are broadly
applicable by the wider community, including other application co-design
centers and vendors. "

•  The 3-state cache coherency version and OpenMP support within SST
has been released."
–  http://code.google.com/p/sst-simulator/!

•  The GREMLIN framework and individual GREMLINs are being released."
–  https://github.com/scalability-llnl/Gremlins!

•  Updated versions of the CoMD, VPFFT, CoGL, and ASPA proxy apps
have been released on GitHub within the past year."
–  https://github.com/exmatex!

•  CoHMM's initial public release on GitHub is imminent."
•  An updated CoMD was included in the Mantevo Suite Release 2.0."

–  http://mantevo.org!

2.4) Release latest instantiation of ASPEN/SST, GREMLIN, scalable
tools used for evaluation and proxy apps to exascale ecosystem!

More from David Richards and Martin Schulz!

34"

Applica1ons	
 &	

Algorithms	

Programming	
 &	

Systemware	
 Hardware-­‐interfacing	
 Tools	

2.2	
 Iden'fy	
 cri'cal	

features	
 of	

programming	
 models	

2.4	
 Release	
 latest	
 …	

proxy	
 apps	

2.2	
 Iden'fy	
 cri'cal	

features	
 of	
 programming	

models	

2.3	
 Assess	
 data/resource	

sharing	
 requirements	

2.1	
 Use	
 SST	
 simula'on	
 and	
 GREMLIN	

interface	
 layer	
 to	
 mimic	
 exascale	

machine	
 behavior	
 on	
 petascale	

plaoorms	

2.4	
 Release	
 latest	
 instan'a'on	
 of	

ASPEN/SST,	
 GREMLIN,	
 scalable	
 tools	

Our milestones map to the 3 partitions!

Y2 Accomplishments:"
•  Multiple deepdive hackathons with our Fast Forward and X-stack partners

using proxy applications has proven to be an extremely effective co-design
engagement."

•  An initial evaluation of runtime system requirements for our scale-bridging
workload was undertaken using our CoHMM proxy app."

•  The GREMLIN emulation infrastructure has proven to be effective to study
power, performance, and resilience impacts at exascale, and has been
released to the exascale community."

35"

Management Plan – Years 2 and 3!
Yr Supporting Capabilities / L2 Milestones L3 areas
2 2.1 Use SST simulation and GREMLIN interface layer to mimic exascale

machine behavior on petascale platforms
PM, ST,
MS

2.2 Identify critical features of programming models PM
2.3 Assess & deliver data/resource sharing requirements, both for scale-
bridging and in situ analysis/viz, to exascale SW partners

PM, ST

2.4 Release latest instantiation of ASPEN/SST, GREMLIN, scalable tools
used for evaluation and proxy apps to exascale ecosystem

PA, TA

Yr Supporting Capabilities / L2 Milestones L3 areas

3 3.1 Deliver DSL at kernel level that schedules and coordinates the execution
and data interchange between scale-bridging kernels at the node level

PM

3.2 Develop OUQ V&V framework for hierarchical/multi-scale structures. AD, PM
3.3 Release latest instantiation of ASPEN/SST, GREMLIN, scalable tools
used for evaluation and proxy apps to exascale ecosystem

PM, TA

3.4 Develop stable accurate adaptive macro-mesoscale-bridging algorithm AD
3.5 Evaluate power management strategies with SPMD proxy apps and
provide node-level API requirements to vendor partners

PM, MS,
TA

In	
 Y2	
 we	
 execute	
 the	
 co-­‐design	
 op1miza1on	
 cycle.	

In	
 Y3	
 we	
 complete	
 the	
 second	
 18-­‐month	
 op1miza1on	
 cycle	

and	
 deliver	
 programming	
 model	
 and	
 OUQ	
 V&V	
 frameworks.	

PA	

TA	

MS	

VS	

ST	

RT	

PM	

AD	

CM	

PA	

TA	

MS	

VS	

ST	

RT	

PM	

AD	

CM	

36"

Co-Design Project Roadmap (Nov 2013) 
!Focus
Area! Level 1!

Level 2 milestones!
Year 1! Year 2! Year 3! Year 4! Year 5!

Proxy apps" Y1: Release
initial proxy
application
suite!

1.1 Single-scale
SPMD and 2-
scale MPMD
proxy apps"

2.4 Release
analysis tool
extensions and
proxy apps"

3.6 Release updated proxy
apps and analysis tools/
extensions"

4.4 Release
updated proxy
apps and analysis
tools/extensions"

5.4 Deliver open-
source exascale
materials proxy
applications suite"

Scale-
bridging
algorithms"

Y4:
Demonstrate
scale-
bridging on
10+ PF
platform!

1.4 Assess and
extend scale-
bridging
algorithms"

2.3 Assess
data/resource
sharing
requirements"

3.1 Define scale-bridging
targets and smaller-scale
prototype app"

3.3 Assess scale-bridging
uncertainty requirements and
implement within prototype
app"

4.1 Demonstrate
petascale data/
resource sharing
for scale-bridging
target problem"

Programming
models"

2.2 Identify
critical features
of programming
models"

3.2 Establish and document
requirements of single-
physics and scale-bridging
programming models"

4.3 Assess and
deliver
requirements for
task/thread
scheduler"

P3R analysis
and
optimization"

1.2 Evaluate
initial single-scale
and scale-
bridging proxy
apps using
ASPEN, SST,
and scalable
tools"

2.1 SST/
GREMLIN layer"

3.4 Use power and resilience
analysis to inform
programming models and
runtime services"

3.5 Develop ASPEN model
for scale-bridging app, and
assess scalability w/coupled
ASPEN/SST"

4.2 Develop and
assess fault
tolerance
strategies and
provide API
requirements to
SW partners"

5.1 Deliver
documented
requirements to
HW vendors"

5.2 Deliver
documented
constraints to SW
partners"

Other" Y5: Deliver
integrated
design
specification
for exascale
materials @
extremes!

1.3 Establish
liaisons and
engagement
strategies with
exascale HW and
SW ecosystem"

5.3 Deliver
prototype of limited
scale-bridging
materials science
capability"

37"

Inter-project gaps!
•  There needs to be a line-of-sight across ecosystem elements, e.g."

–  Do emerging OS/R(s) support our runtime assessment requirements?!
–  Compilers repeatedly arise as potential bottlenecks.!
–  A common modeling/simulation/emulation strategy for tradeoff analysis!
–  The ecosystem needs to have a consistent architecture specification.!
–  Close partnerships between co-design centers and Fast Forward / Design

Forward / X-stack projects are essential, but consume additional bandwidth.!

Intra-project gaps"
•  Limited bandwidth to assess the zoo of emerging programming models"

–  At a minimum, we need to consider 3 types: MPI+X (e.g., X=OpenMP4.0),
task-inherent (e.g., X10, Chapel, Charm++), and PGAS (e.g., DEGAS)!

•  Limited bandwidth to evaluate algorithmic and numerical tradeoffs"
–  e.g. Fourier vs. real-space, mixed precision, other motifs in the 7 pillars!

Gap assessment!

38"

9:00 "Welcome and ExMatEx Project Overview "Tim Germann"
9:45 "Applications & Algorithms " " "David Richards"
10:30 "Break"
10:45 "Programming & Systemware " " "Allen McPherson"
11:30 "Runtime Demos" " " " "Chris Mitchell"
12:00 "Lunch (on your own – LLNL cafeteria)"
1:15 "Hardware-Interfacing Tools " " "Martin Schulz"
2:15 "GREMLIN Demos " " " "Barry Rountree &"

" " " " " " "Ignacio Laguna"
3:00 "Small group discussions/office visits ""
4:00 "Outreach/engagements, summary, and path forward "Jim Belak"
4:30 "Private Session"
4:45 "Call-back, questions/outbrief"
5:00 "Adjourn"
"

Today’s Agenda!

39"

Applica1ons	
 &	
 Algorithms	
 Programming	
 &	
 Systemware	
 Hardware-­‐interfacing	
 Tools	

2.2	
 Iden'fy	
 cri'cal	

features	
 of	

programming	
 models	

2.4	
 Release	
 latest	
 …	

proxy	
 apps	

2.2	
 Iden'fy	
 cri'cal	

features	
 of	
 programming	

models	

2.3	
 Assess	
 data/resource	

sharing	
 requirements	

2.1	
 Use	
 SST	
 simula'on	
 and	

GREMLIN	
 interface	
 layer	
 to	

mimic	
 exascale	
 machine	

behavior	
 on	
 petascale	

plaoorms	

2.4	
 Release	
 latest	

instan'a'on	
 of	
 ASPEN/SST,	

GREMLIN,	
 scalable	
 tools	

9:45-­‐10:30	
 	

	
 	
 David	
 Richards	

10:45-­‐11:30	

	
 	
 Allen	
 McPherson	

11:30-­‐12:00	

	
 	
 Demos:	
 Chris	
 Mitchell	

and	
 Allen	
 McPherson	

1:15-­‐2:15	
 Mar'n	
 Schulz	

2:15-­‐3:00	
 Demos:	

Barry	
 Rountree	
 and	

Ignacio	
 Laguna	

Our milestones and agenda map to the 3
partitions!

Algorithms & Applications!

 
ExMatEx Y2 Review  
Presented at LLNL  
December 4, 2013  

David Richards: Algorithms & Apps Lead"
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under"

Contract DE-AC52-07NA27344, by Los Alamos National Laboratory under Contract DE-AC52-06NA25396 and supported by the DOE"
Office of Advanced Scientific Computing Research. LLNL-PRES-647492"

42"

Applica1ons	
 &	

Algorithms	

Programming	
 &	

Systemware	
 Hardware-­‐interfacing	
 Tools	

2.2	
 Iden'fy	
 cri'cal	

features	
 of	

programming	
 models	

2.4	
 Release	
 latest	
 …	

proxy	
 apps	

2.2	
 Iden'fy	
 cri'cal	

features	
 of	
 programming	

models	

2.3	
 Assess	
 data/resource	

sharing	
 requirements	

2.1	
 Use	
 SST	
 simula'on	
 and	
 GREMLIN	

interface	
 layer	
 to	
 mimic	
 exascale	

machine	
 behavior	
 on	
 petascale	

plaoorms	

2.4	
 Release	
 latest	
 instan'a'on	
 of	

ASPEN/SST,	
 GREMLIN,	
 scalable	
 tools	

Our milestones map to the 3 partitions!

Y2 Accomplishments:"
•  Multiple deepdive hackathons with our Fast Forward and X-stack partners using proxy

applications has proven to be an extremely effective co-design engagement."
•  Proxy application have also driven internal “engagements”"

43"

Code: Qbox/
LATTE"
"
Motif: Particles
and
wavefunctions,
plane wave
DFT,
ScaLAPACK,
BLACS, and
custom parallel
3D FFTs"
"
Prog. Model:
MPI + CUBLAS/
CUDA"

Code: SPaSM/
ddcMD/CoMD"
"
Motif: Particles,
explicit time
integration,
neighbor and
linked lists,
dynamic load
balancing, parity
error recovery,
and in situ
visualization"
"
Prog. Model:
MPI + Threads"

Code: SEAKMC"
"
"
Motif: Particles
and defects,
explicit time
integration,
neighbor and
linked lists, and
in situ
visualization"
"
Prog. Model:
MPI + Threads"

Code: AMPE/
CoGL"
"
"
Motif: Regular
and adaptive
grids, implicit
time integration,
real-space and
spectral
methods,
complex order
parameter"
"
Prog. Model:
MPI"

Code: ParaDis"
"
"
Motif:
“segments”"
Regular mesh,
implicit time
integration, fast
multipole
method"
"
Prog. Model:
MPI"

Code: VP-FFT"
"
"
Motif: Regular
grids, tensor
arithmatic,
meshless image
processing,
implicit time
integration, 3D
FFTs."
"
Prog. Model:
MPI + Threads"

Code: ALE3D/
LULESH"
"
Motif: Regular
and irregular
grids, explicit
and implicit time
integration."
"
Prog. Model:
MPI + Threads"
"

Ab-initio! MD! Long-time! Phase Field! Dislocation! Crystal! Continuum!
Inter-atomic
forces, EOS"

Defects and
interfaces,
nucleation!

Defects and
defect

structures!

Meso-scale
multi-phase

evolution!

Meso-scale
strength!

Meso-scale
material

response"

Macro-scale
material

response"

Seven pillars of computational materials science!

44"

The ExMatEx Proxy Application Suite!

CoGL: Ginsburg/Landau  
Phase Field"

CoMD: Classical "
Molecular Dynamics"

LULESH: Lagrangian 
Shock Hydrodynamics"

?"

?"
?"

ASPA: Adaptive  
Sampling"

CoHMM: Exercise  
Runtime Systems"

VPFFT: Crystal  
Viscoplasticity "

45"

CoHMM Status!
CoHMM Enhanced with new “spatial adaptive sampling”"

• Original CoHMM launched MD
simulation for each coarse scale
mesh element"

• Spatial sampling decreases run
time and provides more
representative fine scale launch
patterns."

46"

•  CoMD v 1.1 incorporates several items from vendor feedback"
–  MPI version runs across multiple nodes. Especially important for EAM.!
–  Generated initial structure allows full flexibility in problem size.!
–  Substantially improved documentation.!
–  Eliminated boundary condition complexities from force loop.!
–  Smaller code base by eliminating unneeded features such as reading atom

configurations from input files.!
•  Versions created in multiple programming models: MPI, OpenMP,

OpenCL, X10, OpenMP tasks, vendor specific versions."
–  More on the way!

•  Contributed to Matevo Suite, R&D 100 winner."

CoMD Status!

48"

Best Paper Award at IEEE IPDPS 2013 (Boston)!

•  Compared LULESH implementations in 8 different models"
•  OpenMP, MPI, OpenMP+MPI, CUDA"
•  Chapel, Charm++, Liszt, Loci"

•  Evaluated programmer productivity, performance, and ease
of applying optimizations."

49"

•  Form the core components of our scale bridging mini app"
•  VPFFT: "

–  Parallel versions created in OpenMP and MPI!
–  Interface implemented for scale bridging mini app!

•  ASPA:"
–  Successfully tested as a replacement for LULESH’s constitutive model!

•  LULESH:"
–  Origins in DARPA UHPC program!
–  Version 2.0 released with !

»  support for multiple regions and dynamic timestepping"
»  Single source base for serial, OpenMP, MPI, and MPI+OpenMP"

–  New versions in new programming models continue to be produced!
–  Extensions to support viscoelastic constitutive model!

VPFFT, ASPA & LULESH Status!

Bill Harrod"

51"

•  2-3 days, 10-30 people, travel to vendor site"
•  Domain scientist gives deep dive description of physical problem and

related proxy app implementation. Highly interactive. Often 2-3 hours."
•  Vendors give deep dive description of hardware designs, rationales,

programming models, tool chain. "
•  Small subgroups work on specific 

hands-on projects."
–  Typically produces useful artifacts 

such as proxy app running in ! 
simulation environment.!

•  App developers gain appreciation  
of hardware design space."

•  Vendors gain understanding  
of app trade-off space."

Anatomy of a Hackathon!

52"

Workflow and data dependency for shock
hydrodynamics (LULESH)!

Init Stress"
Iterate Stress"

Stabilize
Elements"

Calc Forces"
Calc Accel"
Apply BC"
Calc Velocity"
Calc
Position"

Calc
Lagrange
Elements"

Calc
Artificial
Viscosity"

Apply
Material
Properties"

Time
Constraint
(Courant)"

e"

Cs"

q"

P"

ql"

F" F’"

dt"

x"

Vol"

dVol"

v"

v"

v"

dt"
dt"

x"

Vol" P"
q"

Initialize"

Do until done"

53"

Host! Location! Dates! Participants! Key Outcomes!
IBM" Yorktown" Jan 21-22" Richards, Keasler" Map key kernels to AMC using"

assembler, critique of architecture"
Sandia  
SST"

Albuquerque" April 10-12" Belak, Richards,  
McPherson,  
Mohd-Yusof"

Put SST Toolkit in hands of"
co-design app developers, identified"
need for OpenMP support"

Intel FF I" Santa Clara" June 4-6" Belak, Richards,"
Keasler, Karlin,"
Mohd-Yusof"

Focus on CoMD, LULESH, debug"
infrastructure, used pthreads, need"
OpenMP, identified HW ops"

IBM DCDC" Argonne" July 16-17" Richards" Improved simulator, AMC mods,"
compiler"

Intel Xstack" Hillsboro" Aug 6-8" Belak, Keasler,"
Mohd-Yusof,"
Mniszewski"

EDT/OCR programming model,"
Roger Golliver’s EDT"
implementation of LULESH"

Nvidia FF" Santa Clara" Aug 13" Keasler" Focus on CUDA programming,"
Michael Garland engaged on RAJA"
and PHALANX"

AMD FF" Austin" Sept 11-12" Belak, Laguna,"
McPherson,"
Mohd-Yusof,"
Mniszewski, Rountree"

Focus on CoMD deep dive,"
resilience and power side"
engagements"

ARM*" Austin" Sept 13" Belak, McPherson,  
Mitchell, Rountree"

Eric Van Hensbergen presented analysis
of ExMatEx proxy apps"

Intel FF II" Santa Clara" Oct 22-24" Belak, Keasler,"
Karlin, Mohd-Yusof"

OpenMP now supported, all CD"
centers invited, focus on EXaCT"

2013 Hackathons!

54"

•  “The co-design activities through hack-a-thons and proxy apps have
been essential to understanding the impact of architecture design
parameters on future exascale-class systems. As architects, having
direct access to DOE scientists and engineers is critical to designing
future systems that best meet the needs of DOE and Intel.” 
 - Allan Knies, Intel"

 "
•  “AMD has found the value of the hack-a-thon concept to be an essential

part of bridging the gap between ‘the domain scientist’ and AMD
research staff. The ability to talk through a particular code and how it
may evolve over time has been particularly valuable. The ability for both
sides to ask key questions to better understand a code and AMD's
research has also been very helpful. As a result, our understanding of
the ExMatEx proxy applications has changed from ‘a simple workload
to study’ to ‘small applications that convey a message’.” 
 - Jonathan Gallmeier, AMD"

How Do Vendors Respond to Hackathons?!

55"

CoMD and OpenMP!

loop iBox over all boxes !
!loop jBox over all nbrs of iBox!
! !if (jBox < iBox) continue!
! !loop iAtom over atoms in iBox!
! ! !loop jAtom over atoms in jBox!
! ! ! !if (rij > rc) continue!
! ! ! !(phi, dhpi) = f(rij)!
! ! ! !Fi += dphi * rhatij!
! ! ! !Fj -= dphi * rhatij!
! ! ! !Etot += phi!

Pseudo-code for the inner loop of the CoMD force kernel"

Exploits symmetry of pair forces. 
Not data parallel"

56"

CoMD and OpenMP!
#pragma omp parallel for reduction (+:Etot)!
loop iBox over all boxes !

!loop jBox over all nbrs of iBox!
! !if (jBox < iBox) continue!
! !loop iAtom over atoms in iBox!
! ! !loop jAtom over atoms in jBox!
! ! ! !if (rij > rc) continue!
! ! ! !(phi, dhpi) = f(rij)!
! ! ! !Fi += dphi * rhatij!
! ! ! !Fj -= dphi * rhatij!
! ! ! !Etot += phi!

Eliminates race condition"

•  Converting to data parallel doubles work load"
•  Limited optimization options"
•  No control of runtime schedule"

57"

CoMD and OpenMP!
#pragma omp single!
loop iBox over all boxes !

!loop jBox over all nbrs of iBox!
! !if (jBox < iBox) continue!
! !#pragma omp task!
! !loop iAtom over atoms in iBox!
! ! !loop jAtom over atoms in jBox!
! ! ! !if (rij > rc) continue!
! ! ! !(phi, dhpi) = f(rij)!
! ! ! !Fi += dphi * rhatij!
! ! ! !Fj -= dphi * rhatij!
! ! ! !Etot += phi!
! !#pragma omp taskwait!

This version is not correct code, however, including  
data dependency information would allow the runtime  
scheduler to eliminate the race condition (and possibly 
optimize data access patterns)."

58"

Evaluating Advanced Memory Architectures!
•  Question: what is the benefit to applications of using advanced

memory architectures?"
–  Upside is extremely high performance (versus DRAM) and reduction in

energy consumption!
–  Downside is architecture complexity (change to memory controllers),

high(er) cost of memory parts and initially lower capacities!
•  Vendor wants to use internal simulation technologies"

–  Assessing the performance of a proposed memory design!
–  Does not want to have to simulate cache hierarchies etc before a processor

design is selected!
•  Want a range of mini-apps so optimization is not too heavily favoring

one algorithm/implementation"
"

59"

Simulation Strategy!
•  Strategy is to use traces of addresses from the memory controller

enabling them to replayed and analyzed"
–  Needs to have a cache model applied to filter addresses!
–  Needs reasonably accurate (but not absolute cycle accurate) timing due to

reordering and thread interaction effects!

"
 Trace Data"
"
Cache Model"

Memory Simulator"

60"

Generating Cache Filtered Memory Traces!

•  Start by compiling binaries
using the developers favorite
compiler"

•  Application runs a normal
input deck (usually
something medium size that
is bigger than caches)"

•  Standard develop, optimize,
run process which
developers are familiar with"

Real Hardware"

User Binary and "
Input Decks"

61"

Generating Cache Filtered Memory Traces!

•  Insert a layer between
application and real
hardware to trap instruction
stream"

Real Hardware"

User Binary and "
Input Decks"

Instruction Stream"
(with register and memory"

information)"

62"

Generating Cache Filtered Memory Traces!

•  Insert a layer between
application and real
hardware to trap instruction
stream"

•  Dynamically read the
instruction stream into an
SST component (all during
execution removing need for
large trace files)"

Real Hardware"

User Binary and "
Input Decks"

SST/
Micro"

63"

Generating Cache Filtered Memory Traces!

•  Simulate a full cache
hierarchy (with coherence)
and memory sub-system"

Real Hardware"

User Binary and "
Input Decks"

L1 Cache"

L2 Cache"

L3 Cache"

Memory
Controller"

DRAM"

64"

Generating Cache Filtered Memory Traces!

•  Simulate a full cache
hierarchy (with coherence)
and memory sub-system"

•  Trap individual instruction
streams per thread and use
this to drive many virtual
cores"

Real Hardware"

User Binary and "
Input Decks"

L3 Cache"

Memory
Controller"

L1 Cache"

L2 Cache"

DRAM"

L3 Cache"

L1 Cache"

L2 Cache"

L3 Cache"

L1 Cache"

L2 Cache"

65"

Generating Cache Filtered Memory Traces!

•  Simulate a full cache
hierarchy (with coherence)
and memory sub-system"

•  Trap individual instruction
streams per thread and use
this to drive many virtual
cores"

•  Trap memory controller
address stream"

–  Virtual time!
–  Read/Write Request!
–  Request Size = 64 bytes (cache)!
–  Request Address!

Real Hardware"

User Binary and "
Input Decks"

L3 Cache"

Memory
Controller"

L1 Cache"

L2 Cache"

DRAM"

L3 Cache"

L1 Cache"

L2 Cache"

L3 Cache"

L1 Cache"

L2 Cache"

Memory Controller"
Trace File"

66"

Status!
•  Tracing completed for LULESH and CoMD"

–  LULESH in 1, 2, 4 and 8-way OpenMP threading!
–  CoMD in serial!

•  Trace files provided to Memory Architecture team"
–  Initial parse through simulation tools!
–  Low memory B/W requirements for CoMD!
–  Much higher for LULESH!

•  Next step in collaboration"
–  Using these results as a basis for a multi-rank MPI job where many

processors use the same memory to drive memory B/W higher!
–  Can we reduce B/W and save energy?!

67"

•  Extracted from a framework developed in
the Coop project"

•  Generates and stores kriging interpolation
models in an M-tree database"

•  Application independent"
•  Distribution includes an example consisting

of:"
–  a set of (18D) points representing

coarse-scale model queries!
–  a corresponding set of (11D) values

representing a fine-scale model
response!

•  Running the example reports the
processing of each query and a summary
of the resulting M-tree topology"

Realistic workloads are needed for ASPA
(Adaptive Sampling Proxy App) analyses!

Processing point: +99"
Missed point: value Id +0 real value: +3.01115515306499093e
+00 interp. value: +3.01115462752790597e+00 error
+5.25537084961058554e-07 "
Number of kriging models +1.03000000000000000e+02"
Number of point/value pairs +3.25000000000000000e+02"
Level +0"
Node Number entries Number data leaf nodes"
+0 +6 +6 "
+1 +4 +4 "
+2 +8 +8 "
+3 +6 +6 "
+4 +6 +6, etc."
"
Level +1"
Node Number entries Number data leaf nodes"
+0 +6 +37 "
+1 +10 +66, etc."

Purpose: How effective is adaptive
sampling for a particular workload?"

68"

Tradeoff: re-use vs. re-computation of expensive fine-
scale model results!

DB"

On-demand fine
scale models"

CSM"
DB$"

Eventually
consistent
distributed
database"

Adaptive"
Sampler"

FSM"

Subdomain 1"

Subdomain 2"

FSM" FSM"

Node 1!

DB"

DB"

DB$"
Adaptive"
Sampler"

Subdomain N-1"

Subdomain N"

Node N/2!

69"

Adding elastoviscoplastic strength!

N. R. Barton, J. Knap, A. Arsenlis, R. Becker, R. D. Hornung, D. R. Jefferson, “Embedded polycrystal
plasticity and adaptive sampling”, International Journal of Plasticity 24 (2008), pp. 242-266."

Assume a form for the "
deformation gradient:"

plastic deformation gradient"
determined by the fine scale"

rotation of the fine-scale frame"

thermo-elastic stretch"

Since"

9 rate equations in 9 unknowns"

set by coarse-scale model"

set by fine-scale model"

the coarse and fine-scale velocity gradients
are coupled by"

Cauchy stress is obtained from an
elasticity model:"

strain measure"

70"

LULESH Must be Extended with Additional State Variable!

position"

velocity"
density"
reference density"

relative volume"

Cauchy stress"

specific body force"

specific internal energy"

pressure"

bulk viscosity"

velocity gradient"

deviatoric Cauchy stress"

Lagrangian coordinates:"

Momentum:"

Energy:"

where"

LULESH"

71"

•  VPFFT: Computes fine-scale velocity gradient by averaging a local
strain rate over a microstructure in a representative volume element "
"

•  Initial assumptions:"
–  Fixed microstructure!
– History comprised of a uniform hardness 

parameter!

•  Fine-scale response is "

Fine-scale viscoplasticity model !

72"

Tradeoff: re-use vs. re-computation of expensive fine-
scale model results!

DB"

On-demand fine
scale models"

CSM"
DB$"

Eventually
consistent
distributed
database"

Adaptive"
Sampler"

FSM"

Subdomain 1"

Subdomain 2"

FSM" FSM"

Node 1!

DB"

DB"

DB$"
Adaptive"
Sampler"

Subdomain N-1"

Subdomain N"

Node N/2!

73"

LULESH

VPFFT

ASPA

Block Diagram of Scale Bridging Algorithm!

74"

Integrating the rate equations!
Decompose into symmetric/skew and volumetric/deviatoric components:"

Assume small deviatoric thermo-elastic stretch:"

Transformed system:"

Assume plasticity doesn’t change material volume:"

Temporally discretized system:"

75"

Thermoelastic
“glue”

LULESH

VPFFT

ASPA

Initial scale bridging mini-app nearly complete!

76"

•  We have released released updated versions of proxy apps in our suite."
•  Internal and external engagements have used proxy apps to address

co-design questions. "
•  In Year 3 we will:"

–  Continue to update and revise the proxy app suite in response to partner
and internal needs!

–  Consider adding new elements to the proxy app suite to address material
science workload.!
»  Long-range (coulomb) forces"
»  Experimental analysis/big data"

–  Continue to develop the scale bridging mini app to meet Y3 milestone 3.1
and prepare for Y4 demonstration.!

Summary & Forward Looking Statements!

Programing Models and 
Systemware (Runtimes)!

 
ExMatEx Y2 Review  
Presented at LLNL  
December 4, 2013"

Allen McPherson: ExMatEx CS Lead"
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under"

Contract DE-AC52-07NA27344, by Los Alamos National Laboratory under Contract DE-AC52-06NA25396 and supported by the DOE"
Office of Advanced Scientific Computing Research. LLNL-PRES-647492"

79"

•  “Our center’s objective is to establish the interrelationship between
software and hardware required for materials simulation at exascale
while developing a multi-physics framework for modeling materials
subjected to extreme mechanical and radiation environments.”"

"

ExMatEx goals and deliverables!

•  Deliverables"
–  Petascale prototype of

a multi-scale materials
modeling application!

–  Specification and
requirements for
exascale ecosystem!

"

80"

Applica1ons	
 &	

Algorithms	

Programming	
 &	

Systemware	
 Hardware-­‐interfacing	
 Tools	

2.2	
 Iden'fy	
 cri'cal	

features	
 of	

programming	
 models	

2.4	
 Release	
 latest	
 …	

proxy	
 apps	

2.2	
 Iden'fy	
 cri'cal	

features	
 of	
 programming	

models	

2.3	
 Assess	
 data/resource	

sharing	
 requirements	

2.1	
 Use	
 SST	
 simula'on	
 and	
 GREMLIN	

interface	
 layer	
 to	
 mimic	
 exascale	

machine	
 behavior	
 on	
 petascale	

plaoorms	

2.4	
 Release	
 latest	
 instan'a'on	
 of	

ASPEN/SST,	
 GREMLIN,	
 scalable	
 tools	

Our milestones map to the 3 partitions!

Y2 Accomplishments:"
•  Multiple deepdive hackathons with our Fast Forward and X-stack partners using proxy

applications has proven to be an extremely effective co-design engagement."
•  An initial evaluation of runtime system requirements for our scale-bridging workload was

undertaken using our CoHMM proxy app."
•  The GREMLIN emulation infrastructure has proven to be effective to study power,

performance, and resilience impacts at exascale, and has been released to the exascale
community"

81"

•  Programming model interactions are project-wide"
–  Proxy app developers!
–  Algorithm and application design; in situ viz and analysis!
–  Computer science for languages and runtime systems!

"
Three areas together represent “programming the application”:"
"
•  Node- and Component-level programming models"

–  Nuts and bolts pieces of overall multi-scale computation!
•  Domain Specific Languages"

–  Insulate science code developers from complexity of ecosystem!
•  Systemware (runtime systems)"

–  Orchestrate dynamic, multi-scale computation onto machine!

Programming Models & Systemware!

82"

ExMatEx application: dynamic and multi-scale!
•  Recall that ExMatEx apps are…"

–  Multi-scale!
–  Dynamic!

•  Each scale is a component…"
–  That dynamically interacts with other components on-the-fly (runtimes)!

•  Components can be…"
–  Serial (single core)!
–  Single node!

»  Multi-core"
»  Accelerated (e.g. GPU)"

–  Multi-node!
»  Groups of the above"
»  Existing libraries"

83"

•  Our multi-scale, adaptive sampling proxy (ASPA), drives requirements"
–  Size and nature of problem!

»  How big is the coarse-scale grid?"
»  How many, and how often, fine-scale computations?"

–  “Speeds and feeds”!
»  How fast must the fine scale calculations run?"
»  What are size and type of data communicated between scales?"

•  Experiment with programming and runtimes with other proxies"
–  Node- and component-level programming models!

»  CoMD, LULESH, VPFFT"
–  Runtime systems “programming in the large”!

»  CoHMM"

Proxies for requirements and experimentation!

84"

•  Baseline, single scale, components"
•  Varying styles of parallelism"

–  Data parallel!
–  Task parallel!
–  Perhaps combined!

•  Varying data types"
–  Unstructured mesh!
–  Interacting particles!

•  Varying “sizes”"
–  Single node!
–  Multi-node!

•  No single programming model provides all these features"

Node- and component- level programming!

85"

•  Continuous topic of discussion for many years"
•  No one uber model or language seems to be emerging"

–  No free lunch developing node- and component-level codes!
•  MPI+X will be provided (more on this later)"
•  Where MPI is used for multi-node communication"

–  And perhaps rank-per-core programming!
•  Where the base language is well known…"

–  C, C++, FORTRAN!
•  Where X is an API for parallelism and acceleration"

–  OpenMP, OpenACC, OpenCL, CUDA, TBB, Cilk+, etc.!
•  Other vendor and academic “solutions”"

–  X10, Chapel, Charm++, etc.!
•  We need to select a few models from this vast sea of possibilities"

Extreme scale programming model discussion!

86"

•  We have a limited set of domains"
–  Coarse scale: unstructured mesh (LULESH)!
–  Fine scale: particles (CoMD) or structured mesh (VPFFT)!

•  Requirements for selection driven by…"
–  Problem requirements (ASPA)!

»  Speeds and feeds; must meet these requirements"
–  Target architecture for petascale prototype!

»  Some portability is of course desirable"
–  Pragmatic realities!

»  Resources, “longevity of solution”, “openness” of solution"

Selecting APIs for our components!

87"

•  Range of capabilities sometimes orthogonal"
–  OpenMP lacks scheduling flexibility; TBB has it!
–  TBB doesn’t vectorize!

•  Range of performance"
–  Vendor specific may be more performant (e.g. CUDA on nVidia)!
–  More general solutions (e.g. OpenCL) may be slightly less performant!

»  Can make transition between vendors (nVidia, AMD) easier"
»  Can make transitions between architectures (GPU, multicore) easier"

•  Requires experimentation and analysis"
"

API selection is a tradeoff!

88"

•  We’ve experimented with multiple implementations using proxies"
–  CoMD: serial, MPI, OpenMP, OpenCL!
–  LULESH: many (including DSL)!
–  VPFFT: serial, MPI!

•  We work with vendors and standards bodies"
–  Via hack-a-thons and meetings to learn APIs!

»  And feedback bugs and feature requests"
•  We lean towards more open, portable, standards where possible"

–  OpenMP vs. Cilk+, TBB!
–  OpenCL vs. CUDA!
–  MPI+X vs. Charm++, X10!

»  Though we keep an open mind"
§  E.g LULESH implementations in Chapel and OCR"

•  Our Y3 work will focus on narrowing selections based on ASPA"

API experiments and selection process!

89"

•  DSLs can insulate application developers from API complexity"
•  Small, focused languages for specific, restricted, problem domain"

–  Potential for productivity, portability, and performance!
–  Not a new concept: SQL, LaTeX, Unix shell!

•  We naturally have the required domain-restricted problem space"
–  At most, a few computational scales with scoped domains!

»  Molecular dynamics: particles, force kernels, etc."
»  Continuum: meshes, calculations on mesh elements (e.g. cells, vertices)"

•  Our goal is to design and implement DSLs for ExMatEx domains!
–  Co-design semantics of language with problem domain specialists!
–  Develop compiler infrastructure that enables those DSLs to interoperate!

»  Amongst themselves (for required multi-scale computation)"
»  With external languages to leverage other capabilities (e.g. solvers)"

•  DSLs applicable beyond ExMatEx (perhaps by broadening semantics)"

Domain Specific Languages!

90"

•  A compiler to generate code for any defined DSL"
–  Previous work in Scala infrastructure!
–  Current work in Terra infrastructure!

•  A DSL for a given problem domain"
–  For ExMatEx: Liszt!
–  Unstructured meshes!

•  An application written in the DSL"
–  For ExMatEx: LULESH!

"

DSL software stack!

DSL Compiler" Scala or Terra"

DSLs" Liszt"

Applications" LULESH"

91"

Example of the Liszt DSL!
val	
 Position	
 =	
 FieldWithLabel[Vertex,Float3](“position”)	

val	
 Temperature	
 =	
 FieldWithConst[Vertex,Float](0.0f)	

val	
 Flux	
 =	
 FieldWithConst	
 [Vertex,Float](0.0f)	

val	
 JacobiStep	
 =	
 FieldWithConst[Vertex,Float](0.0f)	

var	
 i	
 =	
 0;	

while	
 (i	
 <	
 1000)	
 {	

	
 	
 for	
 (e	
 <-­‐	
 edges(mesh))	
 {	

	
 	
 	
 	
 val	
 v1	
 =	
 head(e)	

	
 	
 	
 	
 val	
 v2	
 =	
 tail(e)	

	
 	
 	
 	
 val	
 dP	
 =	
 Position(v1)	
 -­‐	
 Position(v2)	

	
 	
 	
 	
 val	
 dT	
 =	
 Temperature(v1)	
 -­‐	
 Temperature(v2)	

	
 	
 	
 	
 val	
 step	
 =	
 1.0f/(length(dP))	

	
 	
 	
 	
 Flux(v1)	
 +=	
 dT*step	

	
 	
 	
 	
 Flux(v2)	
 -­‐=	
 dT*step	

	
 	
 	
 	
 JacobiStep(v1)	
 +=	
 step	

	
 	
 	
 	
 JacobiStep(v2)	
 +=	
 step	

	
 	
 }	
 	

	
 	
 for	
 (p	
 <-­‐	
 vertices(mesh))	
 {	

	
 	
 	
 	
 Temperature(p)	
 +=	
 0.01f*Flux(p)/JacobiStep(p)	

	
 	
 }	

	
 	
 for	
 (p	
 <-­‐	
 vertices(mesh))	
 {	
 	

	
 	
 	
 	
 Flux(p)	
 =	
 0.f;	
 JacobiStep(p)	
 =	
 0.f;	
 	
 	

	
 	
 }	

	
 	
 i	
 +=	
 1	

}	

	

Mesh Elements	

	

Topology Functions	

	

Fields (Data storage)	

	

Parallelizable for	

92"

•  In Y1 of the project we implemented LULESH in Liszt"
–  Old version of compiler framework (Scala)!
–  Summer collaboration between Stanford and LLNL!
–  Early difficulty encountered in semantic mismatch!

»  Ordering of mesh elements inconsistent"
»  LULESH requires ordered vertex access"

–  Liszt had ½ the lines of code of LULESH!
–  2x increase in execution time over LULESH!
–  Workarounds found for these problems!
–  Lessons learned!

»  DSL implementation of LULESH feasible"
»  Design of Liszt requires input from LULESH developers"

§  To accurately capture necessary semantics"

»  DSL design is language co-design"

Previous work and DSL issues!

93"

•  In Y1 of the project we identified issues with original compiler"
•  Old version of compiler based on Scala language"
•  Several deficiencies for desired ExMatEx functionality"

–  Interoperation with legacy software!
»  Scala version (JVM) makes external linkage difficult"
»  Other ExMatEx components"
»  C, C++, FORTRAN libraries"

–  Require more “adaptive” framework!
»  To node/processor architectures"
»  To internal data structures"

§  Beyond static meshes"

»  JIT compilation"
§  Beyond source-to-source"

–  Support multiple, interoperating DSLs!
»  Meshes, particles"

Previous work and compiler issues!

94"

•  Identified shortcomings of Scala version drove reimplementation"
•  Terra: low-level system programming language for building DSLs"

–  Enables JIT compiled DLSs!
–  Enables interoperation with existing applications and libraries!

•  Designed to interoperate seamlessly with Lua"
–  Lua is high-level scripting language!
–  Use Lua to meta-program Terra!
–  Lua code can generate arbitrary Terra programs at runtime!

Reimplementation of DSL compiler: Terra!

Lua/Terra"
Liszt"

LULESH"

Serial" Multi-core" GPU" Cluster Runtime"

95"

•  Terra compiler infrastructure built and released open source"
–  Using LLVM!
–  Support for vector instructions!
–  http://terralang.org!

•  Terra compiling test DSLs at reasonable performance"
–  Matmult, stencils, nbody!

•  Terra implementation of Liszt underway"
–  Compiling and generating code for single-core runtime!

•  Upcoming Y3 tasks"
–  Finish Liszt implementation in Terra!
–  Continue Stanford/LLNL collaboration to re-implement LULESH!
–  Design particle-based DSL!
–  Broaden backend to distributed runtime systems!

»  Perhaps Stanford Legion; perhaps ExMatEx systemware"

Terra status and Y3 DSL efforts!

96"

•  Current HPC stack—developer does everything"
–  FORTRAN, C, C++, “X” (and libraries)!
–  MPI!
–  Static scheduler!

•  An ExMatEx software stack—system services provide support"
–  Node-level work still focused on “X”!
–  Dynamic, adaptive scheduling and load balancing!
–  Messaging (within language or specific API/library)!
–  Caching for fault-tolerance and demand-driven execution!

»  Can also be used for messaging"
–  Software comes from academia, vendors, commercial data center!

»  Monolithic (Charm++, X10, etc.) and service-based (cloud, web)"
•  Many of today’s successful startups use diverse software stacks"
•  Identify gaps and shortcomings in these technologies"

–  Are there areas where engineering dollars can enable adoption?!

Systemware/runtimes: programming-in-the large!

97"

•  Scale bridging proxies are the focus of the runtime task"
–  Discovery, scheduling, coordinating, communicating, detecting faults, etc.!

•  Multiple scales, potentially adapting dynamically, and communicating"
•  Each “scale” may be an X, or a DSL, or and MPI+X"

–  Runtime needs to integrate these components and orchestrate the job!
•  Working on two parallel, but complimentary approaches!

–  CoHMM!
»  Here we focus on developing dynamic codes using system services"
»  Explore additional programming models"

§  Scala, Erlang, Go, JavaScript, etc."
§  Not typically used in HPC context"

–  ASPA (adaptive sampling)!
»  Used to specify final prototype problem and runtime requirements"

§  Speeds and feeds"

Scale-bridging proxies for runtime research!

98"

•  2-scale bridging"
–  Macroscale (HMM) with!
–  Microscale (CoMD)!

•  Y1 early efforts"
–  Scala!
–  Erlang!
–  “Cloud”!

•  Significantly extended in Y2"
–  Co-Design Summer School!
–  Problem made more mathematically accurate (for publication)!
–  Evaluate multiple monolithic and service-based runtime systems!
–  Multiple acceleration strategies added to test runtime features!
–  Use in-memory database for acceleration and fault tolerance!

CoHMM proxy: runtime system research!

99"

CoHMM: 2D, 50x50 cells!

100"

Co-design Summer School
•  Los Alamos IS&T Co-Design Summer School

–  For recruiting and advertising LANL’s co-design work
–  Small (6), multi-disciplinary team of students
–  50/50 mix of US/FN
–  Work on co-design problem

»  2011 & 2012: LANL CoCoMANS LDRD
»  2013: ExMatEx

–  Publish results
»  Open source, reports, talks, posters
»  Students @ SC, SIAM, nVidia GTC

–  Enhanced CoHMM Proxies
–  Explored multiple runtime approaches

»  Industry
»  Academic (including XStack)

101"

Name! School! Area!
Robert Pavel" University of Delaware" CS"
Axel Rivera" University of Utah" CS"
Venmugil Elango" “The” Ohio State University" CS"
Emmanuel Cieren" Laboratoire Bordelais de Recherche en

Informatique"
HPC"

Dominic Roehm" Universität Stuttgart" Physics"
Bertrand Rouet-Leduc" École Normale Supérieure / Cambridge" Physics"

2013 Summer School: Students!

102"

•  “Reality” of Problem"
–  Actual shock wave propagation!
–  Consistency, physical units, etc.!
–  Original problem was 1D, T=0 (one CoMD calculation, brute-force)!

•  Dimensionality"
–  2D, and real 2D!

•  Adaptivity"
–  Importance sampling on error measure (learning procedure, gradient)!
–  Kriging (interpolation, reusing points, databases)!
–  Task mapping to remove duplicated tasks usable for all symmetries!

»  Symmetric reusability (database)"
»  Pull results from database"

•  Fault Tolerance"
–  In-memory database backing CoMD particle locations!

Summer School: Improvements to CoHMM!

103"

System! Dimension! Adaptive! Database! Fault
Tolerant!

Status!

HPX" Bugs and lack of documentation. Triage it away." Abandoned"
Scioto" 1D, 2D" AMR, Kriging" redis" No" OK"
Pathos" 1D" Yes" No" Process" OK"
Intel CnC" 2D" No" No" No" OK"
Charm++" Synthetic benchmarks only. Evaluate load-balance." Eval. only"
Spark" 1D, 2D" AMR, Kriging" redis" CoMD atom" OK"
Mesos" Evaluated favorably. Installation issues." Eval. only"
Swift! 1D! No! No! Process! CoMD 1.0!
Erlang! 1D! No! No! Process! CoMD 1.0!
Scala! 1D! No! No! No! Simple MD!
“Cloud”! 1D! No! multiple! Process! CoMD 1.1!

CoHMM: Implementations (School + early)!

104"

•  Runtime functionality enables many acceleration strategies"
–  Dynamic task launch!
–  In-memory databases for caching!

•  Acceleration strategies used in combination"
"
•  Gradient based CoMD task launch"
•  CoMD task launch short circuit"

–  Schedule all CoMD tasks per timestep!
–  Check parameters; launch those that differ!

•  CoMD database"
–  Cache previously computed CoMD results!

•  Kriging task launch short circuit"
•  Kriging database"

CoHMM acceleration strategies!

Pa
ra

lle
l L

oo
p

O
ve

r
Ta

sk
m

ap
Lo

op
 O

ve
r

R
es

ul
ts

Lo

op
 O

ve
r

Fi
el

d
Lo

op
 O

ve
r

Ta
sk

lis
t

Yes

No

Values>Threshold Values<Threshold

YesNo

105"

CoHMM: visualization of accelerations!

106"

CoHMM: visualization of accelerations!

107"

•  CoMD 1.1 performance"
•  HMM (macrosolver performance, parallelization)"
•  Runtime and language overhead"

–  Spawning!
–  Load balancing!
–  Communication!

•  Database overhead and performance"
•  Solution accuracy"

–  Gradient-based and Kriging tradeoffs!
•  Papers in preparation"

–  “Spatial Adaptive Sampling in Multiscale Simulation”, Rouet-Leduc, et.al.!
–  "Kriging supported Adaptive Sampling for Non-Oscillatory Central

Schemes”, Roehm, et.al.!
–  “Exploring and Parallelizing Heterogeneous Multiscale Modeling through Co-

Design”, Pavel, et.al.!

CoHMM: Summer School Analysis!

108"

•  Detailed technical analysis still in preparation…"
•  Early information and “lessons learned”"

–  Only able to scale to low-100’s of nodes!
–  Only able to scale to low-1000’s of cores!
–  Testing at 50x50 grid!
–  CoMD runs take on the order of 20 seconds!
–  Coarse-scale HMM fast, single node OpenMP!
–  Under these constraints, overheads are low!

»  Scheduling of CoMD runs"
»  Read/write performance of in-memory database"
»  Service provided by runtime systems made many, varied

implementations possible in short amount of time (10 weeks)"
–  Must evaluate runtime system in context of current and near-term machines!

»  Will not have permissions to drastically change operations"
»  Must run within “user space” and static scheduler"

Runtime system issues!

109"

•  Much like node- and component-level selection process…"
•  Focus on requirements generated by ASPA proxy"
•  Limit selection to solutions that fit operational platforms"
•  Test scalability at ASPA-directed scales"
•  Tradeoffs"

–  Performance!
–  Productivity and capabilities to innovate!
–  Pragmatic realities!

•  By end of Y3 should have good handle on requirements…"
•  And begin shifting energy to EVP proxy implementation"

Runtime systems Y3 tasks!

110"

•  Node- and component-level programming"
–  We are experimenting with, and analyzing models using proxies!
–  We are working with vendors in co-design loop!
–  We will make selections based on problem scope and requirements!

•  Domain Specific Languages"
–  We have built a new DSL infrastructure: Terra!
–  We have implemented LULESH once and are doing it again in Terra!
–  We will design a particle DSL for another component of our problem space!
–  We will investigate how to best target “cluster” backend (runtime system)!

•  Runtime systems: programming in the large"
–  Our dynamic problem demands runtime services!
–  We’ve experimented with many runtimes; they enable dynamic functionality!
–  ASPA-generated requirements will drive our selection of runtimes!

Summary!

111"

•  Two demos"
•  Extensions of Y1 work based on Y2 evaluations"
•  Erlang prototype (monolithic)"

–  Extended for fault tolerance!
•  “Cloud” prototypes (service-based)"

–  Extend to use CoMD 1.1!

Runtime system demonstrations!

112"

Erlang CoHMM application structure!

hmm_srv"

LOsolve"

comd_srv" comd_srv" comd_srv"

gnuplot"

comd_sup"

CoMD" CoMD" CoMD"

trap_exit link"

supervision link"
hmm_sup"

shell"

113"

Erlang CoHMM demo!

114"

•  Most “cloudy” of these three proxies"
–  These technologies usually not seen in

scientific simulation apps!
•  Apache ZooKeeper"

–  Distribute computation to pool of nodes!
•  Node.js"

–  Launch computations (real CoMD)!
–  Stateless, run and exit!

•  redis"
–  NoSQL database!
–  Used to communicate results!

»  CoMD stores results"
»  1D HMM code reads results"

Resource & Task Management (RT):  
“Cloud” Implementation!

/"

/nodes" /hostname:"
{online"|"shutdown}"(ephemeral)"

/tasks"

/pending"
/taskID:"

{jobID,"timeStep,"cellID,"exe,"
{addlParameters}}"(sequential)"

/running"
/taskID:"

{jobID,"timeStep,"cellID,"exe,"
{addlParameters}}"(sequential)"

/host:"
assignedHostname"(ephermeral)"

/complete:{"""}"

/complete"
/taskID:"

{jobID,"timeStep,"cellID,"exe,"
{addlParameters}}"(sequential)"

115"

“Cloud” architecture!

Redis"

117"

Exascale Co-Design Center for
Materials in Extreme Environments!

Hardware-Interface Tools  
Performance Analysis & Modeling: GREMLINs / SST / ASPEN!

Martin Schulz (Analysis Tools Lead) !!
!This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under"

Contract DE-AC52-07NA27344, by Los Alamos National Laboratory under Contract DE-AC52-06NA25396 and supported by the DOE"
Office of Advanced Scientific Computing Research. LLNL-PRES-647492"

118"118"

System
Software

Proxy
Apps

Application
Co-Design

Hardware
Co-Design

Computer
Science

Co-Design

Vendor
Analysis

Sim Exp
Proto HW

Prog Models
HW Simulator

Tools

Open
Analysis

Models
Simulators
Emulators

HW
Design

Stack
Analysis
Prog models

Tools
Compilers
Runtime

OS, I/O, ... HW Constraints

Domain/Alg
Analysis

SW Solutions

System Design!
Application Design!

Workflow within the Exascale Ecosystem!
“(Application driven) co-design is
the process where scientific
problem requirements influence
computer architecture design, and
technology constraints inform
formulation and design of algorithms
and software.” – Bill Harrod (DOE)

119"119"

System
Software

Proxy
Apps

Application
Co-Design

Hardware
Co-Design

Computer
Science

Co-Design

Vendor
Analysis

Sim Exp
Proto HW

Prog Models
HW Simulator

Tools

Open
Analysis

Models
Simulators
Emulators

HW
Design

Stack
Analysis
Prog models

Tools
Compilers
Runtime

OS, I/O, ... HW Constraints

Domain/Alg
Analysis

SW Solutions

System Design!
Application Design!

Workflow within the Exascale Ecosystem!
“(Application driven) co-design is
the process where scientific
problem requirements influence
computer architecture design, and
technology constraints inform
formulation and design of algorithms
and software.” – Bill Harrod (DOE)

120"120"

•  Analytical models provide high-level trends (Aspen)!
–  But don’t cover low level details!

•  Simulators enable access to architectural details (SST)!
–  But are slow and difficult to use with complex codes / validation?!

•  Emulation of system properties on current systems !
–  Limited set of features, but can run complex codes on real systems!

•  Performance measurements!
–  Accurate results, but limited to current architectures!

A Continuum of Evaluation Techniques!
Architectural	

Simula'on	

	

Performance	

Measurements	

	

Analy'c	

Modeling	

	

Architectural	

Emula'on	

	

Holis'c	
 Performance	

Analysis	
 for	
 Co-­‐Design	

121"121"

•  Analytical models provide high-level trends (ASPEN)!
–  But don’t cover low level details!

•  Simulators enable access to architectural details (SST)!
–  But are slow and difficult to use with complex codes / validation?!

•  Emulation of system properties on current systems !
–  Limited set of features, but can run complex codes on real systems!

•  Performance measurements!
–  Accurate results, but limited to current architectures!

A Continuum of Evaluation Techniques!
Performance	

Measurements	

	

Holis'c	
 Performance	

Analysis	
 for	
 Co-­‐Design	

122"122"

•  Measuring applications
on existing machines!
–  Wide range of tools!
–  Many metrics!

•  Understand proxy
application applicability!

Creating Baselines Using Performance Analysis!

123"123"

•  Analytical models provide high-level trends (Aspen)!
–  But don’t cover low level details!

•  Simulators enable access to architectural details (SST)!
–  But are slow and difficult to use with complex codes / validation?!

•  Emulation of system properties on current systems !
–  Limited set of features, but can run complex codes on real systems!

•  Performance measurements!
–  Accurate results, but limited to current architectures!

A Continuum of Evaluation Techniques!
Architectural	

Emula'on	

	

Holis'c	
 Performance	

Analysis	
 for	
 Co-­‐Design	

124"124"

•  Can we make  
! !a Petascale class machine  

behave like what we expect  
! !Exascale machines to look like? !

–  Resource limited (power, memory, network, I/O, …)!
–  Have less favorable compute/bandwidth ratios!
–  Higher fault rates and lower MTBF rates!

•  The GREMLIN framework emulates such characteristics!
–  Deployed transparently to the application / part of the system!
–  One bad behavior at a time!

•  The role in the Co-Design process!
–  Evaluate proxy-apps and compare to baseline!
–  Determine bounds of behaviors proxy apps can tolerate!
–  Drive changes in proxy apps to counter-act exascale properties!

!

Architectural Emulation!

125"125"

•  Target:  
Power Constrained Systems"

•  GREMLIN: 
Limit per node power and
study application impact"

•  Technique: 
Intel’s RAPL / Sandybridge"
–  Set RAPL at Init!
–  Execute on normal HW!

•  Example: 
CoMD Proxy App on  
128 tasks"

•  Observe performance
measured using standard
techniques (e.g., wall clock)"

A First GREMLIN Example: Capping Power!

0.020 0.025 0.030 0.035 0.040

20
40

60
80

Avg. Power per Task

Elapsed Time (Seconds)

Av
g.

 W
at

ts

●
●

●

●
●●

●

●

●

●

●

●

●● ●
●

●

● ●

●
●●

●

●

●

●

●

●

●●
●

●●

●

●
●

●

●

●
●

●

●
●

●

●
●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●
●

●

●●

●

●

●

●
●

●
●
●
●

●●

●●
●

●

●

●

●

●

●●

●

●

●

● ●●

●

●●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●
●●

●
●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●●

●

●

●●
●

●

●

●

●

●●

●
●

●

●

●

●
●●

●

●

●
●

●
●

●

●
●●
●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●
● ●

●
●

●
●
●

●
●

●
●●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●
●● ●●

●
●
●

●●
●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
● ●●

●
●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●●

●

●
●

●

●

●

●●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●
●●
●
●

●
●●

●
●

●

●
●
●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●
●

●

●

●

●●

●
●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●●

●
●●

●

●
●

●
●

●

●
●

●

●

●●
●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●●
●

●

●
●
● ●

●
●

●

●

●

●

●

●

●

●●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●
●

●
●

●
●

●

●●

●
●

●●

●
●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●●

●
●●

●

●

● ●

●

●
●
●

●

●

●

●●
●
●

●

●

●
●

●●

●
●

●
●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●●

●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●
●

●

●
●●●

●

●

●
●

●●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●● ●
●

●
●

●
●●

●
●

●
●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●●

●

●
●

●

●

●●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

● ●

●

●

●
●

●●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●
●●

●
●●

●

●

● ●

●
●

●
●

●

●

●

●

●
●

●
●
●
●

●

●

●

●
●

●

●

●

●
●

●●
●
●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●
● ●●

●

●

●

●●

●

●

●●●

●●
●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●● ●

●

●●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●

●●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●●●
●

● ●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●●

●

●

● ●

●

●●

●
●●

●

●
●

●●●

●

●

●
●

●
●

●

●

●

●
●
●

●
●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

● ●

●

●

●

● ●
●

●

●●
● ●

●

●

●
●

●

●●

●

●

●

●

●
●●

●
●

●

●

●

●
●●

●●

●

●

●
●

●●

●

●●
●●

●●

●●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●●
●

●

●●

●
●

●

●

●
●

●

●

●

●
●●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●●

●

●
●

●

●
●

●

●
●●

●●

●

●

●

●●●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●●

●
●

●
●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●●
●

●●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●●

● ●

●

●

●
●

●

●

●●

●

●
●

●
●

●● ●

●

●
●
●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●●

●●

●

●

●
●

●

●●

●
●
● ●

●

●

●

●
●

●

●●●

●
●

●

●
●
● ●●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

● ●

●●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●
●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●
●

●
●
● ●

●
●●

●
●●
●●

●

●

●

●

●
●

●

●
●

●

●●

●
●●
●

●●

●●

●

●

● ●●
●●

●

●

●
●●

●●●
●

●

●

● ●
●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●
●

●

●●

●
●

●

●

●●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

● ●●

●●

●

●

●

●

●●

●
●

●

●

●●

●

●●

●●●

●

●
●

●●
● ●●

●

●
●

●

●
●●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●●
●

●

●
●

●

●
●

●
●

●
●

●

●

●●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●●

●

●

●

●●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

● ●

●

●
●●

●●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

● ●

●●
●

●

●

●

●

●●

●
●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●● ●

●

●

●
●

●

●●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●● ●●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
●

●

●●

●●

●

●
●

●

●
●

●

●
●

●●
● ●●
●●

●

●
●

●

●

●

●
●

●

●

●
● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●
●

●
●

●
●

●

●

●
●●

●
●
●

●

●
●●

●
●

●
●

●

●

●
●●●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●
●

●
●

●

●

●●●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●●●

●

●●●

●

●
●

●

●
●

●

●
●●

●

●●

●

●
●

●●

●

●

●

●

●

●

●
●●

●●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●
●●

●●

●●

●●
●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

● ●

●
●

●

●
●

●

●●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
● ●●

●

●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●●
●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●
●●

●

●

●
●●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●● ●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●●

●

●

●
●
●

●

●

●●

●
●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●
●

●
●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●●

●

●

●
●

●●

●●

●●

●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●
●
●
●

●
●

●

●

●
●

●●

●●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●
●

●
●

●●

●
●

●●
●

●

●

●
●●●

●

●

●
●

●

●
● ●

●●
●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

● ●
●
●
●

●
●

●●
●
●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●
●

●
●

●

●●

●

●

●
●●

●●●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
● ●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●
●

●

●

●
●
●
●

●●

●

●●

●

● ●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●
●

●
●

●

●
●

●

●
●

●●
●
●

●

●
●●

●
●

●●●
●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

● ●

●

●

●

●

●

●

●

●
●

●
●●
●
●
●

●

●●

●

●●

●

●●

●

●
●

●●● ●

●

● ●
●
●

●

●

● ●

●

●

●

●

●●

●

●
●

●●

●

●

●

●
●

●

●

●

●
●
●

●

●●

●

●
●

●●

●

●●
●●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●
● ●
●

●
●

●

● ●●
●

●

●

●

●● ●

●

●
●● ●

●

●
●
●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

● ●
●

●●●

●

●

● ●

●
●●●

●

●

● ●

●
●

●

●

●
●

●●

●●

●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●●

●
● ●

●●
●●

●

●

●

●●●

●●

●

●

●●
●

●
●

●

●

●

●

●

● ●
●

● ●●

●
●
●

●

●

●

●

●
●

●

●

●
● ●

●●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●

●

●
●
●
●●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●●

●●

●

●

● ●

●

●●

●

● ●

●

●
●●

●

●●●
●

●

●

●

●

●

●
●●

●

●

● ●● ●

●
●

●

●
●

●

●
●

●
●

●●

●

● ●

●
●

●
●

●

●●

●●

●

●

●

●

●●●
●

●
●
●●

●

●

● ●

●

●
●

●

●

●
●

●●
● ●● ●●

●

● ●
●

●

●

●
●

●
●●

●

●
●

●

●
●

●

●
●

●●

●

●
●

●

●
●

●

●
●

●●
●●
●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●●

●

●
●
●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

●

●

●

●

●
●

● ●
●

●
●
●

●
●

● ●

●
●

●

● ●

●

●
●

●

●

●●
●

●

●●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●●

●

●

●

●

●

●

● ● ●●●

●
●

●●

●

● ●

●

●●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●
●

●
●
●
●

●
●●

●●

● ●
●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●
●

●

●

●●
●

●●

●

●
●

●●

●
●

●

●

●
●

● ●

●●

●

●

●● ●

●

●

●

●
●

●

●

●
●

●

●

●

● ●
●

●
●●
●

●

● ●

●

●
●

●●●

●

●

●●

●

●
●

●

●

●● ●

●

●

●

●

●
●

●●

●
● ●

●

●

●

●

●

●

●

●
●●●

●

●

●

●
●
●
●

● ●
●

●
●

●

●

●

●●
●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●
●●

●

●

●

●

●

●● ●

●
●

●

●●

●

● ●
●
●●

●

●

●
●

●
●

●

●

●

●●●
●

●●

●

●

●

●

● ●●
●

●
●
●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●●

●
●●

●

●

●

●

●

●●
●●

●●

●
●

●●

●

●

●
●

●

●

●●

●
●

●

●

●

●● ●
● ● ●

●

● ●●●

●●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●● ●●

● ●
●

●●●
●

●

●

●

● ●

●

●
● ● ●

●●
●● ●

●

●

●

●

●
● ●●
●

●●●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

● ●
●
●
●

●

●

●

●

●

●
●
●

●

●● ●
●
●

●
● ●

●

●

●

●

●

●
●

●

●

● ●●

●

●
●

●

●

●
●●
●
●
●

●

●●

●

●
●●

●

●●

●

●

●

●
●●

●

●
●

●

●●

●

● ●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●
●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●
●

●
●
●●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●
●

●

●

●
●

●●●

●●●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

● ●
●

●● ●
●

●

●
●
●

●●

●
●

●●

●

●

● ● ●

●

●
●

●
●●

●

●
●

●

●●

●
●

●●

●

●●●●
●

●●
●

●

●
●

●

●
●●●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●
●●

●● ●

●

●

●
●

●
●

●

●

●
●

●
● ●

●
●
●

●

●
●●

●
●

●●
●

●
●

● ●

●

●
●

●

● ●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

● ●
●

●
●
●

●
●

●
●

●
●

●
●●

●

● ●
● ●

●●●

●
●

●
●

●

● ●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

● ●

●●

●

●

●

●●

●

●●
●

●
● ●

●
●● ●●

●

●

●

●

●

●

●●

●

●
●

●●●
●●●●

●●
●

●

●

●

● ●

●●

●

●

●
●

●●
●

●

● ●

●

●

●

●

●

●
●

●●

● ●
●
●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●
●

●
●
● ●

●

●

●
●

●●

●

●

●
●

● ● ●
●

●
●●

●

●

●

●

●●

●

●
●

● ●
●

●

● ●

●

●
●

●● ●

●
●

●●●

●

●

●
●

●●

●●

●

●

●

●
●

●
●

●

●

●

●

●●
●

● ●
●

●

● ●

●

●
●

●

●

●● ●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●

●
●
●
●

●

●
●

●

● ●
●

●
●●

●

●
●

●

●

●

●
●

●

●

●

● ●

●●
●

●●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●●● ●

●

●
●●

●

●●
●

●

●
●

●
●

●
●
●

●
●
●●●

●●

● ●

●

● ●●●
●

●

●●
●

●

● ●

●
●●

●

●

●
●

●●●
●

●
●●

●

●

●●

●

●

●

●
●

● ●
●
●

●
●

●

●

●

●● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●●●●

●

●●

●
●

●

●

●

●

●
●

●
●
●

●

●●

●●

●●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

● ●

●

●

●

● ●
●

●

●
●
●

●

●
●●

●
●

●

●

●

●

● ● ●●●●
●

●

●●
●
●

●
●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●●
●●

●

●
●●
●

●

●●

●

●

● ●
●

●

●
●

● ●
●

●

●●●

●

●●●
●●●

●

●

●
●
● ●●●●

●
●

●

●
●

●

●
●

●

●

● ●

●

●

●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●● ●●

●

●
●
●
●●
●

●

●●

●
●

●

● ● ●

●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

●

●

●
●● ●

●●●

●

●
●

●
●
●

●

●●

●
●

●

●

●● ●●

● ●
●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●●
●

●

●

●
●

●●● ●

●
●

●
●

●

●
●

●

●

●
●

●
●

●
●●●

●●
●

●
●
●
●

●●

●
●

●

●

●●

●
●

●

● ●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●
●
●

●

●
●

●

●

●

●
● ●

●●●

●

●
●
●
●
●

●

●●

● ●

●

●●

●

●

●

● ●

●

●

●

●
●
●

●

●
●

●

●
●

●●

●

●

●
●
●

●
●●

●

●●
●
●

●

● ●

●

●

●

●
●●●

●
●

●

●●●

●

●● ●

● ●

●
●
●●
●●● ●

●● ●

●●

●

●

● ●●

●

●●
●
●

●

●
●

●

●●
●

●

●●

●
●

●

●

●●
●

●

●
●

●
●● ●

●

●●
●

●

●

●

●
●

●● ●

●●

●

●

● ●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●
● ●

●
●

●

●

●
●●

●

●

●
●
●
●

●

●

●
●

●

●

●

●●

● ●

●●
●

●

●
●

●● ●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●
●●

●

●
●

●

●●

●

●●
●

●●
●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●
●

●
●●
●

●

●

●●

●
●
●
●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●●

●

●● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●
●

●

●

●

●● ●
●
●

●

●

●

●

●
●
●

●●
●

●

●
●

●

●

●
●

●

● ●

●

●

● ●

●

●

●
●

●●●
●●
●

●
●

●
●

●

●●

●●

●

●

●

●●
●

●●●

●

●●

●●

●
● ●

●

●

●

●

●
●●
●
●●

●
●

●

●
●

●

● ●●●●

●

●

●

●

●

●

●●
●

●
●

●●●●●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

● ● ●

●

●●

●●
●●

●
●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

● ●
●

●

●●●
● ●

●
●

●●

●●●●●●

●
●●

●

●

●

●●
●

●
●

●

●●

●

●

●

● ●

●

●●

●●●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●
●
●

●

●

●
●●

●

●

●
●

●

●●

●

●
●●

●

●

●

●●

●
●●

●●●

●

●

●●

●
●

●●●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●●

●
●
●● ●●

●

●

●

●
●

●●
●

●
●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●●

●

●●

●

● ●

●

●

●
●

●●● ●

● ●

●

●
●

●●
●

●

●
●

●

●●●●● ●

●
●

●

●●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●
●

●
●

●

●

●
● ●

●
●

●
●

●●●
●

●
●

●

●

●

●
●

●

●
●

●

● ●

●

●●

●●
●

●
●●

●

●
●
●

●

●

●

●

●●
●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●● ●

●
●
●●

●
● ●

●

●
●

●

●

●

●

● ●

●

●

●
●●

●●●

●

●

●

●

●

●

●

●●●

●

●
●

● ●
●
●●

●

●
●

●

●

●

●
●

●

●

●

●●
●●

●
●

●●●

●
●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●
●
●
●●
●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●
●
●

● ●●

●

●

●

●

●●●

●
●●

●

●
●
●

●

●

●
●●●
●

●●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●
●

●
●

●
●
●
●●

●
●

●
●

●
●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●
●●

● ●●

●

●

●

●●
●●

●

●

●

●
●

●
●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

● ●●
●

●

●

● ●●

●

●

●

● ●
●●

●
●
●●
●

● ●

●

●

●●

●

●

●

● ●

●
● ●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●
●

●

●

●

● ● ●

●●

●●●

●

●
●

●

●●

●

●

●
●

●

●

●
●
●
●

●

●
●

●●
●

●

●

●● ●
●

●
●

●●●

●

●
●

●
●

●

●

●

●
●

●

●
●
●●

●●

● ●

●

●

●

●

●
●●

●

●

●●

●●●

●

●●●●

●

●●●●●●
●
●●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●●

●

●
●
●

●

●
●

●

●

●
●

●

●

●
●
●●
●

●

●
●

●

●

●

●
●

●
●

●

● ●

●
●

●

●●
●

●
● ●●●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●●
● ●

● ●●●

●
●●

●

●

●
●

●
●

●
●
●

● ●
●●

●

●
●

●
● ●

●
●

●

●

●

●

●

●
●

●

●
●
●

●●
●

●
●
●

●
●
●

●

●

●

●

●

●
●●●●

●

●

●● ●
●

●
● ●

●

● ●
●

●
●●

● ●

●
●●

●

●●
●

● ●

●
●

●● ●
●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●
●

●

●●
● ●

●
●●

●

●

●

●
●

●
●

●●
●●

●
●

●

●

●

●
●

●
●

● ●

●

●
●

●
●

●

●●●
●●

●

●

●

●

●
●
●●

●

●

● ●

●

●
●

●

●●
●
●

●
●

●● ●●●
●●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●●
●

●●
●
●
● ●

●
●
●●

●●
●● ● ●

●
●

●●
●

●

●
●

●

● ●
●

●

●
●●●

●
●

●
●
●●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●●

● ●

●

●

●

●
●

●

●

●●
●●●●●

●

●

●

●
●

● ●
●●
●

●
●●
● ●
● ●

●
●

●

●

●
●

● ●●●

●●
●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

● ●

●●
●

● ●

●

●●

●

●

●
●●●

●
● ●●

●●●

●

●
●

●
●
●
●

●●

●
●
●

●

●

●●
●

●

●
●●

● ●
●

●●
●

●

●●

●

●

●

● ● ●● ● ●●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●
●●

●●●
●

●

●

●

●
●

●

●
●

●

●
●

● ●●
●

●
●

●

●

●●●
●

●●●

●

●

●

●●●

●

●

●

●
●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●
●

●

●

●
●

●

●
●
●

●

●

●

●
●● ●●
●

●

●

●●●
●

●●
●

●●●●

●

● ●●

●

●

● ●
● ●

●
●●

●

● ●

●

●●

●
●

●●
●●

●
●

●
●

●

●
●●
●●●●

●

●

●
●●

●
● ●

●

●●●

●

●

●

●

●

●

●
●

●
●

●

●●●

●

●●

●
●

●
●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●
●

●
●

●

●

●

●●
●

●

●
●

●

●●

●● ●
●

●●●

●

●

●●

●●

●

●

●

●
●
●

●
●
●

●
●

●

●

●

●

●●

●
●●
●●

●

●●
●

● ●
●

●
●●

●

● ●●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●
●●●

●
●

●

●

●

●
●

●

●
●
●
●

●
●●●

●

●
●
●

●
●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●
●

●
●

●●●
● ●

●

●
●●

●

●

●
●

●

●
●●●

● ●●●
●

●

●

●

●

●
●

●●
●
●

●

●●
●

●

●
●
●

●●

●

●

●
●

●

●
●

●●●

●

●

●
●

●

●

●

●

●● ●
●●
●

●

●

●●

●

●●●

●

●

●

●

●

●●
● ●

●

●●

●

●●

●

●●

●

●
●

●
●

●
●●
●●

●

●

●●
●

●

●●

●
●

●●
●●● ●

●

●
●●●

●

●
●
●
●

●
●

●

●●
●
●

●●

●
●

●

●

●

●
●
● ●

●
●●●
●●
●

●
●
●

●
●

● ●

●
●●

●

●

●
●

●

●● ●
●

●
●

●●
● ●●

●

●
●

●●
●

●

●
●

●

●

●

●●●
●

●
●●

●
●

●●
●

●

●
● ●
●●

●

●●

●●

●

●

●●●●

●
●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●
●

●

●●●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
● ●●●

●
●
●●
●●

●

●
●●

●●
●

●

●

●●
●●

●
●●

●

●
●●●

●
●

●●
●●
●

●

●
●

●

●
●
●

●

●

●

●
●●●

●

●

●

●

●
●
●●
●
●

●

●
●

●

●
●
●
●

●

●●
●

●●
●

●

●

●
●●

●

●●●
●●
●

●
●

●
●
●

●

●●

●

●
●●

●

●●

●

●

● ●

● ●

●

●

● ●●
●●●
●●

●
●

●
● ●

●

●

●
●
●

●
●● ●

●

●
●
● ●

●

●
●

●

●
●●

●

●
●

●

●
●
● ●

●

● ●

●

●

●
●

●

●●
● ●

●●

●
●
●

●
●

●

●

●

●
● ●

●●●● ●
●●

●

●●

●

●

●
●
●
●
●

●
●
● ●●

●●●

●
●

●

● ●

●
●●

●
●
●●●
●

● ●●

●

●

●●
●
●

●

●

●

●
●

●

●
●●

●

●
●

●
●

●

●● ●
●

●
● ●

●
●

●

●

●
●●●●
●

●

●
●

●

●
●
●

● ●

●●●
●
●●

●

●

●

●●

●
●

●

●
●●● ●

●

●●●●
● ●●

●

●

●

●●

●

●
●

●

●
●

●
●

●●
● ●

●

●●●
●● ●
● ●

●

●

●

●
●
●
●

●

●

●
●

● ●

●

●
● ●●

●

●●
●
●

● ●

●

●

●

●

● ●●

●

●

●

●
● ●

●
●
● ●●
●

●
●

●●●

●

●

●●
●●
●●●
●

●● ●
●●
●●
●

●
●●

●
●● ●●

●

●

●●●

●

●

●

●
●● ●
●●●
●●

●●

●

●●

●

●

●

●

●
●

●● ●
●

● ●

●
●

●
●

●

●

●
●

●

●

●●●

●

●
●
●
●●●

●●

●

●●
●

●

●
●●

●

●●

●
●●

●

●

●

●

●●

●

●

●
●
●
●●
●

●
●
●●
●

●

● ●
●

●

●

●
●

●
●

● ●

●

●
●●

● ●●●●

●
●

●

●●

●●

●
●
●●

●

●
●

●

●●

●

●

●

● ●
●

●
●

● ●

●
●

●● ● ● ●●
●

● ●
●●● ●

●

●

● ●●
●●●

●
● ●●

●

●

●

●
●

●

●●●

●
●

●
●

●

●

●
●

●
●●●

●

●●

●

●
●●
●

●
●
●
● ●●

●
●

●

●●
●

●
●

●
●
●

●●
●●●
●

●

●

●
●

●●●

●

●

●
●

●●●●

●

●

●

●

●

●

●

● ●●
●

●
●
● ●

●
●●●

● ●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●●
●
●

●●●
●●●

●
●
●●●

●

●

●
●

●●

●
●
●
●

●●

●●

●●

●
●

●● ●
●

●
●
● ●
●●

●

●

●

●

●

●
●

●
●

●●
●●

●
●

●

●

●

●
●●

●

● ●
●

●●

●

●●
●
●
●

●

●

● ●
●●
●

●

●●

●

●

●
●● ●
●

●●●
●

●
●

●●
●

●

●●

●

●

●

●

●

●●
●
●●

●
●

●
●●

●
●
●
●

●

●
●

●●
●

●
●●

●

● ●●●
●

●

●

●●

●
●
●

●

●●
●
●

●●●●
●

●

●
●
●
●●
●

● ●
● ●

●
●
●

●

●

●

●

●

● ●
●

●
●

●

●

●●

●

●
●●
●

●

●

●

●

●

●●
●●

●

●

●

●
●

●●

●

●

●

●

●

●
●●
●

●

●●●
●
●

●

●●
●
●
●

●
●

●●●●
● ●

●

●
●

●

●

●
● ●

●
●

●

●
●● ●

●

●

●

●

●
●

●
● ●●●

●

●●●●

●
●●

●

●

●
●●● ●●●

●
●●

●
●●

●

●

●
●●
● ●●●●● ●

●

●

●

●

●

●

●●
●●●
●

●●

●●●● ●●●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●●
●
●
●
●
●
●
●

●●
●●

●

●

●●
●
●●
●

●
●
●

●

●
●

● ●●

●

●
● ●

●●●

●
●

●

●

●
●●
●
●

●

●
● ●

●
●●●

●
●

●

●●
●●
●●● ●● ● ●

●
●
●

●

●●

●

●
●

●
●

●● ●
●

●

●
●●

●●
●

●●

●
●

●

●●
●
●

●

●

●

●

●

●
●

● ●

●
●

●

●●
●
●

●
●

●●
●
●●

●
●●

●

●

●

●

●
●

●●

●
●
●

●
●●

●
●●

●●
● ●
●

● ●
●●

●

●
●●

●
●

●

●

●

●

●

●

●● ●
●

●

●

●
●

●

●●

●

● ●

●

●
● ●●

●

●
● ●

●

●●

●

●

●

●

●●
● ●

●●

●
●

●●
●

●●●

●

●
●
●●
●

●
●

●
●

●

●
●●●

●

●

●

●●

●●●
●●

●

●●
●●●●

●

●
●

●
●

●
●

●

●

●

●

●

●●

● ●

●

●●

●
●

● ●

●●
●

●
●

●●

●

●

●

●

●

●●

●
●●
●
●●
●

●

●

●

●
●

●●

●

●

● ●●
●

●
●

●●

●
●

●

●

● ●●
● ●

●●●

●●

●●
●●
●

●

●

●
●

● ●

●
●●●●●
●
●

●●

●

●
●
●
●

●
●
●● ●

●

●●

●●

●

●

●

●

●●
●
● ●●●

●●●

●●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●●

●

●
●●●
●●●●

●
●
●
●●

●
●
●

●
●●

●

●

● ●

●
●●

●
●●

●

●
●

●
●
●

●

●● ●

●

●

●

●

●
●
●

●●●
●

●●

●

●

●
●●●

●●●
●
●

●

●●

●

●
●

●

●●●●

●

●
●

●

●

●

●

● ●
●

●●●
●

●
●●

●
●

●

●

●

●

●

●●
● ●

●

● ●

●

●
●

●

●
●

●

●

●

●●

●
●●●●

●●● ●●
●

●

●

●

●●
●
●

●
●

●●●● ●

●
●●●

●

●●
●

●●●●
●

●

●●
● ●

●

●

●

●

●

●
● ●●

●

●
●

●●●

● ●
●

●

●

●

●
●

●

●●●

●
●
●

●

●
●
●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●
●
●
●

●

●

●
●

●

●
●
●

●
● ●

●

●
●

●

●

●
●

●
●

●
●
●●●

●●
●●

●●

●

●

●

●●
●

●

●

●
●

●

●●

●

●
●
●

●
● ●●

●
●●
●

●
●

● ●

●●
●
●
●

●●●

●

●
●●

●●

●

●

●
●

●
●

●

●●

●

●

●

●

●●
● ●●

●

●
●

●

●

●

●●

●
●
●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●

●
●

●●

●

●

●

●

●

●

●

●
●
●

● ●

●

●
●

●

●
● ●

●
●

●

●●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●●
●

●
●
●

●
●

●
●●

●
●●

●●

●
●●

●

●
●●

●

●

●
●

●●●●
●

●
●●

●● ●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●
●
●
●●●

●

●
●

●●
●●●
●

●●

●
● ●

●
●

●●

●

●

●
●

●

●●
●
●

●

●
●●●

●

●●

●●●
●●

●
●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●●●●
●

●

●
●
●
●

●●
●

●

●●

●●●
●

●

●

●

●

● ●

●

●

●

●●
●

●●
●● ●●

●

●

●
●

●

●

●

●

●
● ●

●

●
●

●

●
● ●●

● ●
●

●

●
●

● ●

●●

●
●

●
●

● ●

●

●
●

●

●
●●

●

●

●

●

●● ●● ●
●

●

●

●

●

●

●

●●

●●
●

●

●●

●

●
●
●
●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●
●●

●
●

●

●
●

●

●

●

●●
●

●
●

●●●
●
●

●
●

●

●●

●

●●●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●●●
●

●

●
●
●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●
●

●

●●

●
●●●

●

●●

●

●
●

●● ● ●
●

●

●

●

●

●
●

●

●
●

●●
●

●

●
●
●

●

●
●

●

●

●

●

●
●

●

●
●●●●

●
●
●●

●●

●

●
●

● ●
●

●

●

●

●
●

●

●

●●

●
●

● ●

●

●

●●

● ●●

●

●
●●

●

●
●

●

●
●
●
●

●
●●

●

● ●●
● ●

●
●

●

●●
●

●

●●● ●

●

●●

●

●●
●

●

●●
●
●
●● ●

●

●
●●

●
●

●●●●
●
●
●
●

●
●

●

●

●
● ●

●
●

● ●

● ●
●

●

●

●

●

●
●

●●
●
●●
●

●
●

●

●
●
●

●●●
●

●
●

●

●

●

●

●
●●

●

● ●●
●●

●●

●
●●

●●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●●

● ●
●

●
●

●●●

●

●

●
●

●

●

●
● ●

●

● ●

●
●●●

●

●
●●

●
●

●●
●
●

●

●
●
●

●
●

●

●

●●
●

●

●

●

●●

● ● ●
●

●●

●

●

●

●

80W bound
60W bound
51W bound

126"126"

•  Techniques to force “bad” behavior on “good” systems!
–  Target individual resources and artificially limit them!

»  Using hardware techniques"
»  Stealing resources by creating contention"

–  Directly inject bad behavior through external events!

•  Individual GREMLINs are implemented as modules!
–  One effect at a time!
–  Orthogonal to each other!
–  Each GREMLIN has “knobs” to control behavior!

•  The GREMLIN framework!
–  Dynamic configuration and loading of individual GREMLINs!
–  Ability to couple a range of “bad behaviors”!
–  Transparent to system and (mostly) to applications!

How to Release GREMLINs onto your Machine!

127"127"

Architecture!

Applica'ons	

Architecture	

Applica'ons	

Architecture	

Measurement	
 Measurement	
 Measurement	

GREMLIN	
 Env.	
 GREMLIN	
 Env.	
 GREMLIN	
 Env.	

Power	
 GREMLIN	

Fault	
 GREMLIN	

Applica'ons	

Architecture	

Rank 0 Rank 1 Rank N

Multi node job (e.g., MPI)

Front end node

GREMLIN	

Control	

Power	
 GREMLIN	

Memory	
 GREMLIN	

128"128"

•  Power!
–  Impact of changes in frequency/voltage!
–  Impact of limits in available power per machine/rack/node/core!
–  Implementation: RAPL on x86 systems!

•  Memory!
–  Restrictions in bandwidth!
–  Reduction of cache size!
–  Limitations of memory size!
–  Implementation: Resource Stealing using additional threads!

•  Resiliency!
–  Injection of faults to understand impact of faults!
–  Notification of “fake” faults to test recovery!
–  Implementation: Directly inject faults or notify if there were faults!

Broad Classes of GREMLINs!

129"129"

•  Thermal!
–  Evaluate thermal caps!
–  Close to basic concepts used in power GREMLINs!

•  Noise!
–  Addition of noise events!
–  Emulate OS behavior!

•  Network!
–  Resource stealing similar to memory GREMLINs!
–  Interference from within node or from partner nodes!

•  More ideas wanted!
–  Open framework and we welcome contributions!

Future: Feeding GREMLINs After Midnight!

130"130"

•  General framework complete!
–  Utilization of current version of PnMPI!
–  Three different classes of GREMLINs!

»  Power, Memory, Resilience"
–  Control still rather manual!

•  First GREMLIN release ready!
–  Modules on top of PnMPI and libMSR (for Power)!
–  Available on github!

•  Current work!
–  Deeper integration of GREMLIN modules!
–  Better configuration options (scripted)!
–  Documentation and developer guides!

Current Status!

131"131"

•  Power GREMLINs!
–  Using RAPL to understand behavior in power limited environments!
–  Barry Rountree (close collaborations with University of Arizona)!

•  Resilience GREMLINs!
–  Injecting and reacting to faults!
–  Expanded resilience work in ExMatEx!
–  Ignacio Laguna!

Demos for Today!

132"132"

A First Set of Memory GREMLINs!
•  Bandwidth evaluation using resource stealing!

–  Steal bandwidth from main thread!
–  Implemented through resource  

stealing thread!

•  Similar story for caches!
–  Occupy cache to prevent thread  

from using it!
–  Interference thread looping  

through memory!

•  Targeted Co-Design questions!
–  Bandwidth sensitivity of proxy apps!
–  Cache footprint of applications!
–  Changes in memory footprints while scaling!
–  Impact of algorithm changes on communication reduction!

Resources"

Ti
m

e"

133"133"

• Example: Lulesh on 64 MPI tasks on CAB!
– Different input sizes!
– Changes in the L3 cache size!

• Analysis!
– Larger inputs impacted more!
– Impact low for > 35%!

• Powerful technique!
– Change of cache size on real applications!

• Limited in types of study it can do!
– Only reduction in resources!
– No fundamental change in architecture!

Pros/Cons of Memory GREMLINs!

134"134"

•  Analytical models provide high-level trends (Aspen)!
–  But don’t cover low level details!

•  Simulators enable access to architectural details (SST)!
–  But are slow and difficult to use with complex codes / validation?!

•  Emulation of system properties on current systems !
–  Limited set of features, but can run complex codes on real systems!

•  Performance measurements!
–  Accurate results, but limited to current architectures!

A Continuum of Evaluation Techniques!
Architectural	

Simula'on	

	

Holis'c	
 Performance	

Analysis	
 for	
 Co-­‐Design	

135"135"

Study with SST: Hardware Coherency!
•  Coherency is the cost of keeping a single, unified view of memory!

–  Contemporary processor models are extensions of previous single core
environments!

–  Instruction sets and applications have an expectation that their of memory is
always correct!

•  Maintaining coherency is expensive!
–  Costly in terms of processor design – protocols are extremely difficult to

design!
–  Can be costly in terms of silicon as extra hardware features are required to

implement the logic (although this is typically lower than say caches)!
–  Potentially costly for energy although research has yet to determine the

overheads and tradeoffs associated with managing a non-coherent
environment (not a given this actually saves anything)!

136"136"

Measuring the Use of Coherency!
• Determining the costs of coherency is difficult!
• Measuring performance counters is limited!

–  Typically processor events associated with protocol are complex!
– Often do not cover entirety of the protocol!
– Often not enough counters in the processor core!
– Need to have counters far out into the “uncore” (memory subsystem)!
– Danger of significant perturbation when reading counters repeatedly!

• A simulation infrastructure can cover these aspects!
–  Track coherency events!
–  Architectural changes possible:!

» Coherence islands"
» Different coherency protocols for higher energy effeciency"

– Run in non-coherent or selective-coherent modes to compare!

137"137"

Coherency in SST/Micro!

• Baseline SST/Micro cache and
memory hierarchy models!
–  Simple MSI-based coherency model

(the most basic)!
– Disable prefetching to simplify

simulation!

• Fast simulation core to enable
efficient multi-threaded
experiments!
–  Trades exact instruction timing

accuracy for performance!
–  Approximates wide, out of order core!

0	
 1	
 2	
 3	

User	
 Binary	
 (Request	
 Stream)	

Virtual	

Cores	

L1D	

Cache	

L2U	

Cache	

Shared	

L3U	

Memory	

Ctrl	
 and	

DRAM	

(Mul'	
 Channel)	

138"138"

Coherency in SST/Micro!

0	
 1	
 2	
 3	

User	
 Binary	
 (Request	
 Stream)	

Virtual	

Cores	

L1D	

Cache	

L2U	

Cache	

Shared	

L3U	

Memory	

Ctrl	
 and	

DRAM	

(Mul'	
 Channel)	

Interested	
 in	
 cache	
 invalida'ons	

(which	
 are	
 the	
 result	
 of	
 coherency	

events	
 –	
 another	
 core	
 modifies	
 data)	

Interested	
 in	
 cache	
 requests	
 which	
 go	
 from	

L3	
 to	
 memory	
 –	
 in	
 a	
 coherent	
 system	
 these	

can	
 be	
 resolved	
 from	
 another	
 cache	

139"139"

Results from MSI Protocol (Baseline)!

0	

2000000	

4000000	

6000000	

8000000	

10000000	

12000000	

1	
 2	
 4	
 8	

Ev
en

t	
 C
ou

nt
	

OpenMP	
 Threads	

L1	
 to	
 L2	
 Req	

L2	
 to	
 L3	
 Req	

L3	
 to	
 Memory	
 Req	

L1	
 Invalida'ons	

L2	
 Invalida'ons	

L3	
 Invalida'ons	

Fixed	
 sized	
 OpenMP	
 LULESH	
 Run	

(Expect	
 halving	
 of	
 counts	
 for	

twice	
 the	
 threads)	

140"140"

Results from MSI Protocol (Baseline)!

0	

2000000	

4000000	

6000000	

8000000	

10000000	

12000000	

1	
 2	
 4	
 8	

Ev
en

t	
 C
ou

nt
	

OpenMP	
 Threads	

L1	
 to	
 L2	
 Req	

L2	
 to	
 L3	
 Req	

L3	
 to	
 Memory	
 Req	

L1	
 Invalida'ons	

L2	
 Invalida'ons	

L3	
 Invalida'ons	

“Cost”	
 of	
 coherency	

(Only	
 small	
 reduc'on)	

141"141"

Results from MSI Protocol (Baseline)!

0	

2000000	

4000000	

6000000	

8000000	

10000000	

12000000	

1	
 2	
 4	
 8	

Ev
en

t	
 C
ou

nt
	

OpenMP	
 Threads	

L1	
 to	
 L2	
 Req	

L2	
 to	
 L3	
 Req	

L3	
 to	
 Memory	
 Req	

L1	
 Invalida'ons	

L2	
 Invalida'ons	

L3	
 Invalida'ons	

Performance	
 opportuni'es	

(Want	
 to	
 make	
 fewer/same	
 requests	
 to	

memory	
 =	
 beher	
 u'liza'on	
 of	
 parallel	
 caches	

or	
 	

more	
 requests	
 resolved	
 in	
 cache)	

142"142"

Results!
• SST/Micro with fine grained memory request models!

–  Initial study is a baseline MSI coherency protocol!
– Driven by LULESH OpenMP with no code modification!

• For fixed problem size, 8 vs. 1 OpenMP thread:!
–  4.92% of L1 cache requests are satisfied from another L1 cache!

» Coherency is reducing memory requests towards memory"
» Data is moving a shorter distance (mainly on chip)"

–  27% reduction in requests from L3 to main memory!
»  Parallel coherent group of 8 cores is utilizing the increased cache"
» Reducing memory bandwidth pressure and data transfer"

143"143"

Discussion!
• Next steps!

–  Add per-state counters to cache models!
– Develop additional coherency protocols in SST!

» MESI, MOESI, etc"
– Conceptual “islands” of a future processor!

» Current results are a baseline for a simple group of 8 cores"
–  Assess trade offs, like!

»  Large caches & powerful cores vs. smaller caches & more cores!
!

• Many issues still to consider!
– Use of non-coherent cores requires programming model changes!

»  potential opportunities in X-Stack"
–  Accuracy of models!

»  Inherent error due to simplification of caches and processor core"

144"144"

•  Analytical models provide high-level trends (Aspen)!
–  But don’t cover low level details!

•  Simulators enable access to architectural details (SST)!
–  But are slow and difficult to use with complex codes / validation?!

•  Emulation of system properties on current systems !
–  Limited set of features, but can run complex codes on real systems!

•  Performance measurements!
–  Accurate results, but limited to current architectures!

A Continuum of Evaluation Techniques!
Analy'c	

Modeling	

	

Holis'c	
 Performance	

Analysis	
 for	
 Co-­‐Design	

145"145"

•  Goal: extract application trends!
–  Independent of architecture or system!
– Capture application characteristics!

•  Aspen: Abstract Scalable Performance Engineering Notation!
– Highly semantic representation for analytical performance models!
–  Implemented as a new language for modeling!
– Goal: machine-independent models for important applications/kernels!
– Models are composable!
–  Associated tool suite to help with analysis!

Aspen: Modeling Application Characteristics!

146"146"

Data Sizes and Traffic Attribution!

147"147"

•  Automated Design Space Exploration!

•  Language redesign of semantics, interpreter!
–  Various cleanup!
–  Unified control flow with kernels!

»  mirrors application programming languages, structure"
–  Rewrite in C++ for easier integration into other models & tools !

•  Added conditional and probabilistic execution!
–  Monte Carlo, unstructured meshes, unbalanced workload!

•  Web User Interface!

•  New tools for the evaluation of Aspen models!
–  Analysis of system balance!
–  Simulation API for synthetic workload generation from Aspen models!

•  Efficient design space exploration!

Recent Advances in the Aspen System!

148"148"

Tool Suite for Design Space Exploration!

149"149"

Example: Problem Size Planner!
•  What’s the largest 3D FFT (edge length n) that …!

150"150"

Example: Problem Size Planner!
•  What’s the largest 3D FFT (edge length n) that …!

–  Fits into memory of the Keeneland machine!

151"151"

Example: Problem Size Planner!
•  What’s the largest 3D FFT (edge length n) that …!

–  Fits into memory of the Keeneland machine!
–  Has an estimated runtime of less than ten seconds!

152"152"

Example: Problem Size Planner!
•  What’s the largest 3D FFT (edge length n) that …!

–  Fits into memory of the Keeneland machine!
–  Has an estimated runtime of less than ten seconds!
–  Has an estimated total energy consumption of no more than five megajoules!

153"153"

Example: Problem Size Planner!
•  What’s the largest 3D FFT (edge length n) that …!

–  Fits into memory of the Keeneland machine!
–  Has an estimated runtime of less than ten seconds!
–  Has an estimated total energy consumption of no more than five megajoules!

n is approximately 5000!

154"154"

Example: System Balance Analysis Tool!

1e0!

1e2!

1e4!

1e6!

1e8!

1e10!

1e12!

1e14!

1e16!
Flops!

Loads!

Stores!Messages!

Memory!

3D FFT!

CoMD!

miniMD!

Problems	
 fixed	
 at	
 100MB	
 	

Memory	
 per	
 MPI	
 task	

155"155"

•  Example: Monte Carlo step with 93% acceptance rate!
probability {
 [0.93] {execute { flops [20]

 stores[4] } }
}

•  Example: load imbalance!
probability {
 [smallodds] { kernel_small(); }
 else { kernel_large(); }
}

•  Can calculate expected value analytically!
•  Can simulate random behavior stochastically!
!

Probabilistic Execution!

156"156"

ASPEN + SST/macro Integration!

•  AspenSimulator concrete
implementation!

•  Aspen calculates runtimes for flops,
loads, stores resource usage!
–  emits SSTMAC_compute()!

•  Aspen emits MPI calls for message
resource usage!

•  early results: assume perfect load
balancing!

157"157"

• Progress on Aspen!
– Automated Design Space Exploration!
– Language redesign of semantics, interpreter!
– Added conditional and probabilistic execution!
– Monte Carlo, unstructured meshes, unbalanced workload!
– Web user interface!

•  First steps towards integrating SST and Aspen!

• New features in process!
–  Process topology!
– Random variables!
–  Enumerations!

• Evaluation of ExMatEx proxy apps!

Summary!

158"158"

•  Analytical models provide high-level trends (Aspen)!
–  But don’t cover low level details!

•  Simulators enable access to architectural details (SST)!
–  But are slow and difficult to use with complex codes / validation?!

•  Emulation of system properties on current systems !
–  Limited set of features, but can run complex codes on real systems!

•  Performance measurements!
–  Accurate results, but limited to current architectures!

Summary: A Synergy of Techniques!
Architectural	

Simula'on	

	

Performance	

Measurements	

	

Analy'c	

Modeling	

	

Architectural	

Emula'on	

	

Holis'c	
 Performance	

Analysis	
 for	
 Co-­‐Design	

159"159"

•  Infrastructure for machine emulation!
–  Completed the GREMLIN architecture!

»  Power: production variations can lead to imbalance even balanced codes"
»  Memory: cache size impact for Lulesh & VPFFT"
»  Faults: tradeoffs for recovery blocks in Lulesh"

•  Architectural simulation!
–  Extensions to SST to simulate coherence solutions and memory hierarchies!

»  Cache coherence impact on Lulesh for OpenMP"

•  Language for analytical models!
–  Rewrite base infrastructure and add tools for better integration!

»  Analytical models for multiple proxy apps"
»  Tradeoff analysis using the Aspen tool suite"

•  Goals and next steps!
–  Complete analysis of all ExMatEx proxy apps!
–  Tighter integration of tools (started with Aspen & SST already)!
–  Compare and contrast results from various tools!

Summary: Progress, Initial Results & Next Steps!

161"

Year 2: Summary!

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under"
Contract DE-AC52-07NA27344, by Los Alamos National Laboratory under Contract DE-AC52-06NA25396 and supported by the DOE"

Office of Advanced Scientific Computing Research. LLNL-PRES-647492"

 
ASCR Co-Design Project Review  

Livermore, CA 
4 December 2013  

"

162"162"

Applica1ons	
 &	

Algorithms	

Programming	
 &	

Systemware	
 Hardware-­‐interfacing	
 Tools	

2.2	
 Iden'fy	
 cri'cal	

features	
 of	

programming	
 models	

2.4	
 Release	
 latest	
 …	

proxy	
 apps	

2.2	
 Iden'fy	
 cri'cal	

features	
 of	
 programming	

models	

2.3	
 Assess	
 data/resource	

sharing	
 requirements	

2.1	
 Use	
 SST	
 simula'on	
 and	
 GREMLIN	

interface	
 layer	
 to	
 mimic	
 exascale	

machine	
 behavior	
 on	
 petascale	

plaoorms	

2.4	
 Release	
 latest	
 instan'a'on	
 of	

ASPEN/SST,	
 GREMLIN,	
 scalable	
 tools	

Our milestones map to the 3 partitions!

Y2 Accomplishments:"
•  Multiple deepdive hackathons with our Fast Forward and X-stack partners

using proxy applications has proven to be an extremely effective co-design
engagement."

•  An initial evaluation of runtime system requirements for our scale-bridging
workload was undertaken using our CoHMM proxy app."

•  The GREMLIN emulation infrastructure has proven to be effective to study
power, performance, and resilience impacts at exascale, and has been
released to the exascale community."

163"163"

Hackathon!Host! Location! Dates! Participants! Key Outcomes!
IBM" Yorktown" Jan 21-22" Richards, Keasler" Map key kernels to AMC using"

assembler, critique of architecture"
Sandia
SST"

Albuquerque" April
10-12"

Belak, Richards,
McPherson, Mohd-
Yusof"

Put SST Toolkit in hands of"
co-design app developers, identified"
need for OpenMP support"

Intel FF I" Santa Clara" June 4-6" Belak, Richards,"
Keasler, Karlin,"
Mohd-Yusof"

Focus on CoMD, LULESH, debug"
infrastructure, used pthreads, need"
OpenMP, identified HW ops"

IBM DCDC" Argonne" July 16-17" Richards" Improved simulator, AMC mods,"
compiler"

Intel Xstack" Hillsboro" Aug 6-8" Belak, Keasler,"
Mohd-Yusof,"
Mniszewski"

EDT/OCR programming model,"
Roger Golliver’s EDT"
implementation of LULESH"

Nvidia FF" Santa Clara" Aug 13" Keasler" Focus on CUDA programming,"
Michael Garland engaged on RAJA"
and PHALANX"

AMD FF" Austin" Sept
11-12"

Belak, Laguna,"
McPherson,"
Mohd-Yusof,"
Mniszewski, Rountree"

Focus on CoMD deep dive,"
resilience and power side"
engagements"

ARM*" Austin" Sept 13" Belak, McPherson,
Mitchell, Rountree"

Eric Van Hensbergen presented analysis
of ExMatEx proxy apps"

Intel FF II" Santa Clara" Oct 22-24" Belak, Keasler,"
Karlin, Mohd-Yusof"

OpenMP now supported, all CD"
centers invited, focus on EXaCT"

164"164"

We have developed
several classes of
GREMLINS to
evaluate application-
level impacts and
strategies for:!

•  Power!

•  Thermal!

•  Resilience!
–  Fault injection!

•  Memory latency/
bandwidth!
–  Limiting resources!

•  Noise!
–  System jitter!

2.1) Use SST simulation and GREMLIN interface layer to
mimic exascale machine behavior on petascale platforms!

165"165"

2.2) Identify critical features of programming models!
•  Express control of workflow beyond communicating serial

processes!
–  e.g. each node level program must become a highly parallel program!

•  Express information (e.g. data dependencies) for higher-level
dynamic control of workflow!
–  e.g. scheduling, resource allocation, messaging, caching, fault detection!

•  Express fine grain concurrency!
–  e.g. Over-decompose the application into small migratable work units,

Charm++, TBB, OpenMP tasks, …!
•  Express data locality / data layout!

–  e.g. OpenCL, CUDA, Phalanx!
•  Express asynchrony beyond barrier!

–  e.g. X10 async, Open Community Runtime (OCR) / Event-Driven Tasks
(EDTs), OmpSs, OpenMP 4.0!

•  Express heterogeneity and hierarchy!
–  e.g. Habanero-C, Phalanx, Legion!

166"166"

2.3) Assess & deliver data/resource sharing requirements, both for
scale-bridging and in situ analysis/viz, to exascale SW partners!

System! Dimension! Adaptive! Database! Fault
Tolerant!

Status!

HPX" Bugs and lack of documentation. Triage it away." Abandoned"

Scioto" 1D, 2D" AMR, Kriging" redis" No" OK"

Pathos" 1D" Yes" No" Process" OK"

Intel CnC" 2D" No" No" No" OK"

Charm++" Synthetic benchmarks only. Evaluate load-balance." Eval. only"

Spark" 1D, 2D" AMR, Kriging" redis" CoMD atom" OK"

Mesos" Evaluated favorably. Installation issues." Eval. only"

Swift! 1D! No! No! Process! CoMD 1.0!

Erlang! 1D! No! No! Process! CoMD 1.0!

Scala! 1D! No! No! No! Simple MD!

“Cloud”! 1D! No! multiple! Process! CoMD 1.1!

We used the CoHMM proxy app to perform an initial evaluation of
runtime system requirements for our scale-bridging workload."

167"167"

•  Although we initially developed and applied these tools to ExMatEx
proxy applications for our own co-design tradeoff analysis, they are
broadly applicable by the wider community, including other
application co-design centers and vendors. !

•  The 3-state cache coherency version and OpenMP support within
SST has been released.!
–  http://code.google.com/p/sst-simulator/!

•  The GREMLIN framework and individual GREMLINs are being
released.!
–  https://github.com/scalability-llnl/Gremlins!

•  Updated versions of the CoMD, VPFFT, CoGL, and ASPA proxy
apps have been released on GitHub within the past year.!
–  https://github.com/exmatex!

•  CoHMM's initial public release on GitHub is imminent.!

•  An updated CoMD was included in the Mantevo Suite Release 2.0.!
–  http://mantevo.org!

2.4) Release latest instantiation of ASPEN/SST, GREMLIN, scalable
tools used for evaluation and proxy apps to exascale ecosystem!

168"168"

Inter-project gaps!

•  There needs to be a line-of-sight across ecosystem elements, e.g.!
–  Do emerging OS/R(s) support our runtime assessment requirements?!
–  Compilers repeatedly arise as potential bottlenecks!
–  Modeling/simulation/emulation for tradeoff analysis!
–  The ecosystem needs to have a consistent architecture specification.!
–  Critical partnerships between co-design centers and Fast Forward / Design

Forward projects are essential, but consume additional bandwidth.!

Intra-project gaps!

•  Limited bandwidth to assess the zoo of emerging programming
models!
–  At a minimum, we need to consider 3 types: MPI+X (e.g., X=OpenMP4.0),

task-inherent (e.g., X10, Chapel, Charm++), and PGAS (e.g., DEGAS)!

•  Limited bandwidth to evaluate algorithmic and numerical tradeoffs!
–  e.g. Fourier vs. real-space, mixed precision, other motifs in the 7 pillars!

Gap assessment!

169"169"

Co-Design Project Roadmap (Nov 2013) 
!Focus
Area! Level 1!

Level 2 milestones!
Year 1! Year 2! Year 3! Year 4! Year 5!

Proxy apps" Y1: Release
initial proxy
application
suite!

1.1 Single-scale
SPMD and 2-
scale MPMD
proxy apps"

2.4 Release
analysis tool
extensions and
proxy apps"

3.6 Release updated proxy
apps and analysis tools/
extensions"

4.4 Release
updated proxy
apps and analysis
tools/extensions"

5.4 Deliver open-
source exascale
materials proxy
applications suite"

Scale-
bridging
algorithms"

Y4:
Demonstrate
scale-
bridging on
10+ PF
platform!

1.4 Assess and
extend scale-
bridging
algorithms"

2.3 Assess
data/resource
sharing
requirements"

3.1 Define scale-bridging
targets and smaller-scale
prototype app"

3.3 Assess scale-bridging
uncertainty requirements and
implement within prototype
app"

4.1 Demonstrate
petascale data/
resource sharing
for scale-bridging
target problem"

Programming
models"

2.2 Identify
critical features
of programming
models"

3.2 Establish and document
requirements of single-
physics and scale-bridging
programming models"

4.3 Assess and
deliver
requirements for
task/thread
scheduler"

P3R analysis
and
optimization"

1.2 Evaluate
initial single-scale
and scale-
bridging proxy
apps using
ASPEN, SST,
and scalable
tools"

2.1 SST/
GREMLIN layer"

3.4 Use power and resilience
analysis to inform
programming models and
runtime services"

3.5 Develop ASPEN model
for scale-bridging app, and
assess scalability w/coupled
ASPEN/SST"

4.2 Develop and
assess fault
tolerance
strategies and
provide API
requirements to
SW partners"

5.1 Deliver
documented
requirements to
HW vendors"

5.2 Deliver
documented
constraints to SW
partners"

Other" Y5: Deliver
integrated
design
specification
for exascale
materials @
extremes!

1.3 Establish
liaisons and
engagement
strategies with
exascale HW and
SW ecosystem"

5.3 Deliver
prototype of limited
scale-bridging
materials science
capability"

170"170"

Thermoelastic
“glue”

LULESH

VPFFT

ASPA

3.1 Initial implementation of the specified proxy app!

171"171"

3.3 Assess uncertainty requirements for scale-bridging
and implement within initial prototype scale-bridging app.!

Uncertainty quantification focuses on a
Quantity of Interest (QoI, e.g. observed
experimental response) and the difference
between experiment (truth) and a Model
(simulation). "
In computational materials science our
focus is the “constitutive” model:"

•  mechanical constitutive models"
•  mobility models"
•  empirical potential models"
•  pseudo-potentials "

A natural uncertainty arises in database
adaptive sampling: the error tolerance in
Kriging interpolation."
Our goal is to quantify the coarse scale
material constitutive model relative to
experiment (truth) and fine-scale constitute
model (better physics) to guide adaptive
sampling."

The Probability that the simulation "
will not match the experiment "
by some amount a is less than /equal to . "

Shock Experiment"

Shock Simulation"

Experiment vs. Simulated Shock Profile"

Quantity of Interest: Extreme Mechanical Loading"

172"172"

Recreate proxy apps using lessons learned and emerging
programming models for emerging architectures!

Preparation:!
Science and Mission"
Stakeholder Buy-in"
Assemble Team"
Implementation Plan"
Development Plan"

Cycle Artifacts:!
 R&D Backlog"
 Algorithm and"

 Model Implementation"
 Proxy Applications"

 Architecture Evaluation"

Co-Design
Agile

Development
Cycle"Incorporated

Design
Elements"

Algorithm
Development"

Trade-off
Analysis"

Impact
Feedback"

Code
Design"

Code
Implementation"

Release to
Exascale

Community"

Release n"

Domain
Science:"

Domain Workload"
Physical Models"

Algorithms"
Simulations"

Team Roles:!
Cycle Master: Co-design PI"
 Project Team: Labs, Univ’s"

 Stakeholders: ASCR, ASC, Vendors"
 Customers: Scientists, HW+SW

Developers"

Exascale Community:!
Release Artifacts:!

HW Requirements"
SW Constraints"

Proxy Applications
Documentation"

"
Software Development:!
ASCR X-stack, ASC CSSE

Data/Analysis"
"

Hardware Development:
Vendors, FastForward, ASCR

Advanced Architecture"

