
Slide 1 U N C L A S S I F I E D

LA-UR-14-27381

2014 Co-Design Summer School

HPX vs. Charm++ vs. CnC

vs. The Students

Sept. 24 2014

Christoph Junghans

Slide 2 U N C L A S S I F I E D

LA-UR-14-27381

About the Summer School

• 6 Students (3 CompSci + 3 AppMath)

– Robert Pavel (U Delware), Bob Bird (U Warwick),

Pascal Grosset (U Utah), Ken Czuprynski (U Iowa),

Andrew Reisner (U Illinois), Erin Carrier (U Illinois)

• 3 Mentors

– Ben Bergen, Christoph Junghans, and Al McPherson

• 1 room

• 10 weeks

• 1 topic

Slide 3 U N C L A S S I F I E D

LA-UR-14-27381

Introduction

• Developed a scheme for

Adaptive Mesh Refinement of a

Hydrodynamics Simulation

– Study of liquids in motion

– Representative of several

applications and interests in

scientific computing

– Tendency for very large scale

simulations of non-uniform systems

• Students worked with domain

experts to develop general

library

Example of a mesh snapshot

Slide 4 U N C L A S S I F I E D

LA-UR-14-27381

HPX (by Pascal Grosset, University of Utah)

• HPX: a C++ runtime environment

– Goal: overcome issues in parallel programming

 Starvation (insufficient concurrent work)

 Latencies (time-distance delay to accessing remotes)

 Overhead (work required for the management)

 Waiting (for contention resolution)

• Still very new: current stable version 0.9.8

• Developed at Louisiana State University

• Adheres to the C++11 Standard and leverages the Boost

C++ Libraries

• Boost license

Slide 5 U N C L A S S I F I E D

LA-UR-14-27381

HPX – The Good

• Easy to learn, as it’s very similar to C++ and the Boost

library (if you are familiar with C++)

• Fully Message driven

• Work done:

– Get a non-AMR version working: Easy

– Integrating within the physics library: Easy

– Running in parallel on one node is very easy - no need to

explicitly create threads

Slide 6 U N C L A S S I F I E D

LA-UR-14-27381

HPX – The Bad

• Lacks some features for synchronization that

runtimes like Charm++ have

• No load balancer for distributed applications

• A lot of the features like futures, asynchronous, …

are now part of C++ 11 – Redundancy

• Documentation is badly structured

– Need to go through the examples to discover some features

• Classes are hard to integrate

– Most of the examples do not have classes

– It can be done, but it's a long winded way

Slide 7 U N C L A S S I F I E D

LA-UR-14-27381

Charm++ (by Robert Bird, Uni. of Warwick)

• Parallel object-oriented programming language based on

C++ using:

– Processor virtualization

– Large number of entities

– Task mapping by an (intelligent) runtime

– Separation of concerns between programmers and the system

• First papers from 1993

• Developed at U llinois at Urbana-Champaign

• Supported on many platform and comm. backends

• Free for academic and Gov. use, not free in GNU sense

• Big user: NAMD

Slide 8 U N C L A S S I F I E D

LA-UR-14-27381

Charm++ – The Good

• Easy to get started

• Easy to make applications fully distributed

• Easy to deal with predictable communication

• Low barrier to entry - if programmed like MPI

• Support for async. MPI (AMPI)

• Good debugger and visualization tools

• Well documented; supportive mailing list

• Ultimately very powerful, once learnt

Slide 9 U N C L A S S I F I E D

LA-UR-14-27381

Charm++ – The Bad

• Intuitive; but (very) different

• Invasive for existing code

• More difficult if you cannot locally determine if you are

expecting to receive a message

• Requires a different paradigm to MPI programming,

which introduces a learning curve

• To get the (full) benefit, you need to fully embrace the

asynchronous paradigm.

• New syntax to learn (Char interface files)

Slide 10 U N C L A S S I F I E D

LA-UR-14-27381

CnC (by Robert Pavel, Uni. of Delaware)

• Intel's Concurrent Collections for C++

– Easy parallelism

– Portability (Windows!!!)

– Efficiency

– Scalability

• Backed by Intel

• Currently ICC, Intel MPI only

• BSD license

Slide 11 U N C L A S S I F I E D

LA-UR-14-27381

CnC – The Good

• Usability of Programming Model and Runtime

– Functional programming with producer/consumer relationships

– Explicitly defined

– Basic use well-documented

– Built-in tools for generating traces for debugging purposes

• Applicability towards AMR

– Mostly producer-consumer relationships

– Built-in reduction to handle time-step reduction

– To ensure results of refinement operation are written to the

correct location, redundant operations are required.

Slide 12 U N C L A S S I F I E D

LA-UR-14-27381

CnC – The Bad

• Reductions undocumented, but examples provided

• Subgraphs (for ease of code re-use) completely

undocumented

• Tuners (garbage collection and load balancing), also

undocumented with very limited examples

• Use of write–once memory of Collections (distributed

memory) is problematic

Slide 13 U N C L A S S I F I E D

LA-UR-14-27381

Back to ExMatEx

Follow up on last year's CoDesign Summer School

• 3 papers:

– B. Rouet-Leduc et al., "Spatial adaptive sampling in multiscale

simulation", Comp. Phys. Comm. 185, 1857 (2014).

– R. Pavel et al., "Cloud+X: a Service-Based HPC Software Stack",

IEEE Trans. on cloud comp., (submitted).

– D. Roehm et al., "Distributed Database Kriging for Adaptive

Sampling", New J. of Phys. (to be submitted).

• 1 student this year

– Dominic Roehm

U Stuttgart

Slide 14 U N C L A S S I F I E D

LA-UR-14-27381

CoHMM (with Dominic Röhm, U of Stuttgart)

• See Kipton Barros’ talk for details on algorithms

– Macro scale (Elastodynamics) coupled to micro scale (MD)

• Implementation of Charm++, CnC, OpenMP, libcircle in

one code base

– Charm++ used very noninvasive (limit to parallel part)

– libcircle (developed at LANL) – big data processing lib

 Queue and dequeue work, write results to database

• Use of Redis Database for storing micro-scale result and

checkpoints (fault-tolerance)

Slide 15 U N C L A S S I F I E D

LA-UR-14-27381

Conclusion

• Runtimes are useful!

• New paradigm – needs to be learned

• Easier to apply in new code base (big chances!)

Documentation Learning Curve Performance

OpenMP + ++ -- (single node)

Charm++ ++ -- ++

HPX - - (0 if C++ nut) + (no balancer)

CnC -- - -

libcircle 0 + 0 (pure mpi)

