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Interactions with ExMatEx

« ExMatEx team has been great — very proactive and
responsive

- Collaborathon at Berkeley Lab in March

- Identified a problem (Susan Mniszewski / Kathy /
Penporn Koanantakool)

- Talk with summer students at LLNL in July
* MinlApps
- Have used Lulesh for UPC++, Habanero,...

- For DEGAS, realistic global communication is
important, e.g., the “previous simulation DB”

- DEGAS: make your HPC machine an HPD machine




DEGAS: Dynamic Exascale Global Address Space
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Communication-avoiding algorithms generalized to
compilers, and communication optimizations in PGAS
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UPC++: PGAS sharing; SPMD control with “Mixins”
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« UPC++ uses templates (no compiler involved)
shared _var<int> s; // int in the shared space

global ptr<LLNode> g; // pointer to shared space
shared_array<int> sa(8); // array in shared space

» Supports possible trend toward PGAS on a chip

» Default execution model is SPMD, but with optional async
async(place)(Function f, T1 argl,..);

- wait(); // other side does poll() \
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Titanium Arrays in UPC++

Amir Kamil, Shan Hongzhanq, and Yili Zhen

“restricted” (non- Useful in grid computations including AMR
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ndarray<double, 3, global> gridB = bArrays[i, j, kl:
gridB.async copy (gridB) ;

« The UPC++ array library has multidimensional arrays with different
“views” for slicing, shrinking, and arbitrary index (not O or 1-based)

» The performance is close to that of a version that explicitly
packs/unpacks (bulk) and to MPI

* The flat (no OpenMP) version is faster than hybrid
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Domain-Specific Scheduling Structures

- Easy: Set of ready tasks Domain decomposition
o © (loops over space) without
o O
dependences
O OOO o
 Medium: Tasks have known Chains: Stencils, SPMV-
relationship (task graph) based methods

0— 0—0 Trees: Divide-and-conquer
00— 0—0 @ 8% algorithms
0—0—0 Graphs: Direct solvers,

Chains  Trees General Graphs  ©9- denseand sparse LU
 Hard: Task structure is not Trees: Search
known until runtime Graphs: Discrete events

Work-stealing task queue, semi-static DAG scheduling,
dynamic DAG scheduling are different scheduling data
Il structures appropriate for different application scenarios

BERKELEY LAB



Resilience in a Distributed Exascale GAS

Resilience strategy: System to Application, GAS-specific

- Affinity-aware BLCR at NODE-level

- Consistency coordination at RUNTIME-|evel
- Containment domains at APP/LIB-level

Recent progress

— GAS-specific CDs (semantics and interfaces, e.g UPC++ API)
— Affinity-aware BLCR prototyped - 50% speedup!

— Consistency coordination designed

Sane, scalable resilience!
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Performance and Energy Node Optimizations

» Code generation options: compiler, DSL, annotations,...
- DEGAS CTree uses Python introspection on ASTs (joint with ASPIRE)
- Domain-Specific Compiler based on LLVM

« Automatic performance tuning to reach limits (uses OpenTuner)

» Roofline modeling to measure limits
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Communication-Optimal Direct Particle
Interactions: Optimizing Imperfect Loop Nests

* Direct N-body problems have 2x
for forces (i,j) and (},i)

redundant computation

« K-body problems in general have ~ k! redundancy
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 Cutoff (<1/3 of other particles) also shown to be optimal
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UPC + Remote Invocation for Scalable Meraculous
Application used in Genomics Grand Challenge

Meraculous Assembly Pipeline Meraculous assembler is used in

reads production at the Joint Genome Institute
E— ——
e e m— — Wheat assembly is a “grand challenge”
New fast I/0O using SeqDB over Hardest part is contig generation (large
k-mers HDF5 iIn-memory hash table)
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New analysis filters errors using
probabilistic “Bloom Filter”

contigs

Graph algorithm scales to 15K cores on W] ! WS
NERSC'’s Edison using DEGAS language RS L = :

rather than shared memory hardware Parallel Meraculous uses UPC
Tera- to petabtye “shared” memory
Combines with new algorithms to
anchor 92% of wheat chromosome
Cray XC30 at NERSC (Edison) is
sufficient to assemble the World’s
biomedical sequencing output

Human: 44 hours to 20 secs
Wheat: “doesn’t run” to 32 secs
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UPC++ Asynchronous Remote Execution
Enables Scalable Data Fusion

PGAS before X-Stack New: Asynchronous invocation

« Asynchronous remote put/get » Event-driven execution & load balancing
« Good locality control and scaling * Hierarchical synchronization and places
E.g.*p=...0r ...=aJi];¢ finish { ... async f (x)...}

« Seismic modeling for energy applications
“fuses” observational data into simulation.

« PGAS illusion of scalable shared memory to
construct matrix and measure data “fit”

« New UPC++ dialect supports PGAS libraries;
future distributed data structure library
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GASNet Asynchronous One-Sided Communication Aids In
Performance Portability and Scaling for NWChem

* Production chemistry code
- 60K downloads world wide
- 200-250 scientific application
publications per year
- Over 6M LoC, 25K files

0 512 1024 1536 2048
# Cores

NWChem

credi:nwchem-sw.r - 3000 -
« New version on GASNet TSP
— Improved performance / portability - *%
 Corvette XStack Project 2 5000 -
— Dynam ' ision £
- S 1500 -
q;;j g" 1000 —_—
;_*53; 500




Hierarchical machines and Applications

* Hierarchical memory

model may be necessary
ggg%g (what to expose vs hide)
- Two approaches to

§
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« Option 1: Dynamic parallelism creation (e.g., Chapel)
- Recursively divide until... you run out of work (or hardware)
- Runtime needs to match parallelism to hardware hierarchy

 Option 2: Hierarchical SPMD with “Mix-ins” (e.g., UPC++)
- Hardware threads can be grouped into units hierarchically

- Add dynamic parallelism with voluntary tasking on a group
- Add data parallelism with collectives on a group




