
DEGAS Overview

Dynamic Exascale Global

Address Space

Katherine Yelick, Eric Roman,

Erich Strohmaier LBNL Lead PIs

Vivek Sarkar & John Mellor-Crummey, Rice

James Demmel, Krste Asanoviç UC Berkeley

Mattan Erez, UT Austin

Dan Quinlan, LLNL

Surendra Byna, Paul Hargrove, Steven Hofmeyr,

Costin Iancu, Khaled Ibrahim, Leonid Oliker, John

Shalf, Samuel Williams, Yili Zheng, LBNL

1

Interactions with ExMatEx

• ExMatEx team has been great – very proactive and

responsive

- Collaborathon at Berkeley Lab in March

- Identified a problem (Susan Mniszewski / Kathy /

Penporn Koanantakool)

- Talk with summer students at LLNL in July

• MiniApps

- Have used Lulesh for UPC++, Habanero,…

- For DEGAS, realistic global communication is

important, e.g., the “previous simulation DB”

- DEGAS: make your HPC machine an HPD machine

DEGAS: Dynamic Exascale Global Address Space

Hierarchical Programming

Models

Communication-Avoiding

Libraries and Compilers

Adaptive Interoperable

Runtimes

Lightweight One-Sided

Communication

Communication-avoiding algorithms generalized to

compilers, and communication optimizations in PGAS

DEGAS Overview 3

UPC++: PGAS sharing; SPMD control with “Mixins”

• UPC++ uses templates (no compiler involved)
 shared_var<int> s; // int in the shared space
 global_ptr<LLNode> g; // pointer to shared space
 shared_array<int> sa(8); // array in shared space

• Supports possible trend toward PGAS on a chip

• Default execution model is SPMD, but with optional async

 async(place)(Function f, T1 arg1,…);
 wait(); // other side does poll()

 DEGAS

G
lo

b
a
l

a
d

d
re

s
s

 s
p

a
c
e

x: 1

y:

l: l: l:

g: g: g:

x: 5

y:

x: 7

y: 0

p0 p1 pn

Titanium Arrays in UPC++
Amir Kamil, Shan Hongzhang, and Yili Zheng

• The UPC++ array library has multidimensional arrays with different

“views” for slicing, shrinking, and arbitrary index (not 0 or 1-based)

• The performance is close to that of a version that explicitly

packs/unpacks (bulk) and to MPI

• The flat (no OpenMP) version is faster than hybrid

5

ndarray<double, 3, global> gridB = bArrays[i, j, k];

gridB.async_copy(gridB);

0.00	

2.00	

4.00	

6.00	

8.00	

10.00	

12.00	

14.00	

8	 64	 512	 4096	 32768	

Ru
nn

in
g	
Ti
m
es
	(s
)	

No.	of	Processes	(x	1	OpenMP)	

Fine-Grained	 Array	

Bulk	 MPI	

gridB gridA

“restricted” (non-
ghost) cells

ghost
cells

intersection
(copied area)

Useful in grid computations including AMR

Mini-GMG multigrid on Edison

6

Domain-Specific Scheduling Structures

• Easy: Set of ready tasks

• Medium: Tasks have known

relationship (task graph)

Chains Trees General Graphs

• Hard: Task structure is not

known until runtime

Domain decomposition

(loops over space) without

dependences

Chains: Stencils, SPMV-

based methods

Trees: Divide-and-conquer

algorithms

Graphs: Direct solvers,

e.g., dense and sparse LU

Trees: Search

Graphs: Discrete events

Work-stealing task queue, semi-static DAG scheduling,

dynamic DAG scheduling are different scheduling data

structures appropriate for different application scenarios

Resilience in a Distributed Exascale GAS

7

• Resilience strategy: System to Application, GAS-specific

- Affinity-aware BLCR at NODE-level

- Consistency coordination at RUNTIME-level

- Containment domains at APP/LIB-level

• Recent progress

– GAS-specific CDs (semantics and interfaces, e.g UPC++ API)

– Affinity-aware BLCR prototyped 50% speedup!

– Consistency coordination designed

• Sane, scalable resilience!

Default BLCR
Affinity-Aware BLCR

Containment domains GAS semantics

• Strict vs Relaxed

• Relaxed

- Comm. Logs

- Dependencies

- Data exchange vs.

 Actual comm.

• Code generation options: compiler, DSL, annotations,…

- DEGAS CTree uses Python introspection on ASTs (joint with ASPIRE)

- Domain-Specific Compiler based on LLVM

• Automatic performance tuning to reach limits (uses OpenTuner)

• Roofline modeling to measure limits

Performance and Energy Node Optimizations

8 DEGAS Overview

Hardware / Operating System

f() B.h()

DSEL

Compiler

.c

In
te

rp
re

te

r

SEJITS

Framework

Application or kernel

.so

cc/ld

cach

e

.py

100 trials (~2 sec/each):

Best Energy: 1.41 sec, 38.3 joules

Best Time: 1.16 sec, 73.8 joules

DEGAS

Communication-Optimal Direct Particle
Interactions: Optimizing Imperfect Loop Nests

• Direct N-body problems have 2x redundant computation

for forces (i,j) and (j,i)

• K-body problems in general have ~ k! redundancy

• 3-body problems: Provably optimal communication,

computation (symmetry) and bounded load imbalance

• Cutoff (<1/3 of other particles) also shown to be optimal

DEGAS Penporn Koanantakool and K. Yelick

UPC + Remote Invocation for Scalable Meraculous
Application used in Genomics Grand Challenge

k-mers

New analysis filters errors using

probabilistic “Bloom Filter”

Graph algorithm scales to 15K cores on

NERSC’s Edison using DEGAS language

rather than shared memory hardware

contigs

Future work: Scaffolds using Scalable Alignment

Human: 44 hours to 20 secs

Wheat: “doesn’t run” to 32 secs

x

x

New fast I/O using SeqDB over

HDF5

reads

Meraculous Assembly Pipeline

Dynamic Exascale Global Address Space project,

joint work JGI, Early Career and Mantissa

DEGAS

Parallel Meraculous uses UPC

• Tera- to petabtye “shared” memory

• Combines with new algorithms to

anchor 92% of wheat chromosome

• Cray XC30 at NERSC (Edison) is

sufficient to assemble the World’s

biomedical sequencing output

Meraculous assembler is used in

production at the Joint Genome Institute

• Wheat assembly is a “grand challenge”

• Hardest part is contig generation (large

in-memory hash table)

UPC++ Asynchronous Remote Execution
Enables Scalable Data Fusion

Dynamic Exascale Global Address Space from LBNL, Rice, UTAustin, UCB, LLNL
11 DEGAS

PGAS before X-Stack

• Asynchronous remote put/get

• Good locality control and scaling

 E.g. *p = … or … = a[i];ç

New: Asynchronous invocation

• Event-driven execution & load balancing

• Hierarchical synchronization and places

finish { … async f (x)…}

• Seismic modeling for energy applications

“fuses” observational data into simulation.

• PGAS illusion of scalable shared memory to

construct matrix and measure data “fit”

• New UPC++ dialect supports PGAS libraries;

future distributed data structure library

Cores: 48 192 768 3K 12K

GASNet Asynchronous One-Sided Communication Aids in
Performance Portability and Scaling for NWChem

• Production chemistry code
- 60K downloads world wide

- 200-250 scientific application

publications per year

- Over 6M LoC, 25K files

12

Performance Analysis and Optimizations of NWChem

• High-performance

computational chemistry code

 Flagship DOE chemistry software

 Developed at PNNL, LBL

• 60K downloads world wide

• 200-250 scientific application

publications per year

• Over 6M LoC, 25K files

• Internal tasking model, memory

management, and application

checkpoint/restart.

• Execution on 100K+ processors

2

NWChem

credit:nwchem-sw.org

500

1000

1500

2000

2500

3000

0 512 1024 1536 2048

W
a

ll
 c

lo
c

k
 t

im
e

 (
S

e
c

)

Cores

GA over GASNET

GA base version

G

o

o

d

• New version on GASNet
– Improved performance / portability

• Corvette XStack Project
– Dynamic barrier elision

Single Program Multiple Data

(SPMD) is too restrictive

Hierarchical machines and Applications

• Option 1: Dynamic parallelism creation (e.g., Chapel)

- Recursively divide until… you run out of work (or hardware)

- Runtime needs to match parallelism to hardware hierarchy

• Option 2: Hierarchical SPMD with “Mix-ins” (e.g., UPC++)

- Hardware threads can be grouped into units hierarchically

- Add dynamic parallelism with voluntary tasking on a group

- Add data parallelism with collectives on a group

0 3 1 2

4

5

6

7

0

1

2

3

• Hierarchical memory
model may be necessary
(what to expose vs hide)

• Two approaches to
supporting the
hierarchical control

