DYNAMIC EXASCALE GLOBAL ADDRESS SPACE

DEGAS Overview

Dynamic Exascale Global
Address Space

Katherine Yelick, Eric Roman,
Erich Strohmaier LBNL Lead Pls
Vivek Sarkar & John Mellor-Crummey, Rice
James Demmel, Krste Asanovi¢ UC Berkeley
Mattan Erez, UT Austin
Dan Quinlan, LLNL
Surendra Byna, Paul Hargrove, Steven Hofmeyr,
Costin lancu, Khaled Ibrahim, Leonid Oliker, John
Shalf, Samuel Williams, Yili Zheng, LBNL

-3
A
1 ""|

BERKELEY LAB

Interactions with ExMatEx

« ExMatEx team has been great — very proactive and
responsive

- Collaborathon at Berkeley Lab in March

- Identified a problem (Susan Mniszewski / Kathy /
Penporn Koanantakool)

- Talk with summer students at LLNL in July
* MinlApps
- Have used Lulesh for UPC++, Habanero,...

- For DEGAS, realistic global communication is
important, e.g., the “previous simulation DB”

- DEGAS: make your HPC machine an HPD machine

DEGAS: Dynamic Exascale Global Address Space

o " Hierarchical Programming 1
e L L Models)
® O
E% [communication-Avoiding | o
o .N - : . Q
£t E Libraries and Compilers S
O = -
- g— i Adaptive Interoperable) ®
2 o Runtimes)| &
= O
QO O (. . :
uﬁ Z Lightweight One-Sided

L Communication L)

Communication-avoiding algorithms generalized to
compilers, and communication optimizations in PGAS

3 DEGAS Overview f\| I

u-mu -«mwm

UPC++: PGAS sharing; SPMD control with “Mixins”

® E
g |
o .
o \
) |
8 i
S
S |
©
T
e g: /
O
PO pl pn
« UPC++ uses templates (no compiler involved)
shared _var<int> s; // int in the shared space

global ptr<LLNode> g; // pointer to shared space
shared_array<int> sa(8); // array in shared space

» Supports possible trend toward PGAS on a chip

» Default execution model is SPMD, but with optional async
async(place)(Function f, T1 argl,..);

- wait(); // other side does poll() \
DEGAS =y
t BERIELEY LAB

Titanium Arrays in UPC++

Amir Kamil, Shan Hongzhanq, and Yili Zhen

“restricted” (non- Useful in grid computations including AMR

host) cells = . 140 Mini-GMG multigrid on Edison
ghost) intersection ., 9
\ ____________ _Tﬂ (cqgpied area) 2 10000 Fine-Grained@>Array®
\ L/ £ coon ABUIKD —=MPIE
| %Io 6.00
: L S
A . g 4.000
—— grids grida B 200 ———
g g
0.00 T T T T
ghI?St 8 647 512F 40967 327680
celils

No.®DffProcessesAxADpenMP)zl

ndarray<double, 3, global> gridB = bArrays[i, j, kl:
gridB.async copy (gridB) ;

« The UPC++ array library has multidimensional arrays with different
“views” for slicing, shrinking, and arbitrary index (not O or 1-based)

» The performance is close to that of a version that explicitly
packs/unpacks (bulk) and to MPI

* The flat (no OpenMP) version is faster than hybrid
5 ol

BERKELEY LAB

Domain-Specific Scheduling Structures

- Easy: Set of ready tasks Domain decomposition
o © (loops over space) without
o O
dependences
O OOO o
 Medium: Tasks have known Chains: Stencils, SPMV-
relationship (task graph) based methods

0— 0—0 Trees: Divide-and-conquer
00— 0—0 @ 8% algorithms
0—0—0 Graphs: Direct solvers,

Chains Trees General Graphs ©9- denseand sparse LU
 Hard: Task structure is not Trees: Search
known until runtime Graphs: Discrete events

Work-stealing task queue, semi-static DAG scheduling,
dynamic DAG scheduling are different scheduling data
Il structures appropriate for different application scenarios

BERKELEY LAB

Resilience in a Distributed Exascale GAS

Resilience strategy: System to Application, GAS-specific

- Affinity-aware BLCR at NODE-level

- Consistency coordination at RUNTIME-|evel
- Containment domains at APP/LIB-level

Recent progress

— GAS-specific CDs (semantics and interfaces, e.g UPC++ API)
— Affinity-aware BLCR prototyped - 50% speedup!

— Consistency coordination designed

Sane, scalable resilience!

Benchmark run time after restart

200 ' ; : : : , , :
800 Defanlf Rl CR
Z00 Affinity-Aware BLCR
500
500
400
300
200
100

Average Execution Time {Sec)

(=]

BT SP FT MG LU CG WA IS
MNAS Benchmarks (CLASS = C)

Containment domains GAS semar

e Strict vs Relaxe’

* Relaxed

Strict Least-Common| B

= CO m m . Log S ' Ancestor CD

- Dependencie;
- Data exchan'
Actual comm

(3

) Upon Replay, E
Jomt icati :

: (1) Inital Communication Communication

To CD "G"

(o

ToCD'H" !

r data differs) E

Performance and Energy Node Optimizations

» Code generation options: compiler, DSL, annotations,...
- DEGAS CTree uses Python introspection on ASTs (joint with ASPIRE)
- Domain-Specific Compiler based on LLVM

« Automatic performance tuning to reach limits (uses OpenTuner)

» Roofline modeling to measure limits

Application or kernel 0 " [.es Energy-optimized|]

] eoe Time-optimized
—> C 2000
| 100 trials (~2 sec/each):
Best Energy: 1.41 sec, 38.3 joules .
cc/ld Best Time: 1.16 sec, 73.8 joules . Lo
I — %2000- .y o
SEJITS "I‘ 1500f T)
Framework A
1000 .0'°. L

Interprete

¢

500 -

Hardware / Operating System J , ,
10 15 20 25 30 35 40 a5
seconds

~ A
DEGAS 8 DEGAS Overview Cugll
’ BERKELEY LAB

Communication-Optimal Direct Particle
Interactions: Optimizing Imperfect Loop Nests

* Direct N-body problems have 2x
for forces (i,j) and (},i)

redundant computation

« K-body problems in general have ~ k! redundancy

600

500 -

400 -

300 |-

200 |-

100 |-

Execution Time Per Timestep (sec)

0
1

 3-body problems: Provably optim
computation (symmetry) and bou

2 4 8 16 32 64 128 256

Replication Factor (c)

al communication,
nded load imbalance

 Cutoff (<1/3 of other particles) also shown to be optimal

DEGAS Penporn Koanantakool and K. Yelick
A

-3
A
& SC14 il
NewO

nears hpc matters. EERKELEVIEAE

UPC + Remote Invocation for Scalable Meraculous
Application used in Genomics Grand Challenge

Meraculous Assembly Pipeline Meraculous assembler is used in

reads production at the Joint Genome Institute
E— ——
e e m— — Wheat assembly is a “grand challenge”
New fast I/0O using SeqDB over Hardest part is contig generation (large
k-mers HDF5 iIn-memory hash table)

-
— g = ‘ao_:f‘ 25
— E— > Yy
— " = .
— ‘ =< -

New analysis filters errors using
probabilistic “Bloom Filter”

contigs

Graph algorithm scales to 15K cores on W] ! WS
NERSC'’s Edison using DEGAS language RS L = :

rather than shared memory hardware Parallel Meraculous uses UPC
Tera- to petabtye “shared” memory
Combines with new algorithms to
anchor 92% of wheat chromosome
Cray XC30 at NERSC (Edison) is
sufficient to assemble the World’s
biomedical sequencing output

Human: 44 hours to 20 secs
Wheat: “doesn’t run” to 32 secs

= A
Dynamic Exascale Global Address Space project, "f“ﬁ |'"|

joint work JGI, Early Career and Mantissa NewOrteans. BERKELEY LAB

UPC++ Asynchronous Remote Execution
Enables Scalable Data Fusion

PGAS before X-Stack New: Asynchronous invocation

« Asynchronous remote put/get » Event-driven execution & load balancing
« Good locality control and scaling * Hierarchical synchronization and places
E.g.*p=...0r ...=aJi];¢ finish { ... async f (x)...}

« Seismic modeling for energy applications
“fuses” observational data into simulation.

« PGAS illusion of scalable shared memory to
construct matrix and measure data “fit”

« New UPC++ dialect supports PGAS libraries;
future distributed data structure library

" -
‘ a mantle
S

conduits North

y
-
(=]
(=]

O
(%}

50 s et T

85} ... S T SRR
=o N =1].le5 : :

gof{m—a N =22e5[-........ S i
vy N =825/ . '

75 ' ? ?
Cores: 48 192 768 3K 12K

A
reeeeee] M)

11
Dynamic Exascale Global Address Space from LBNL, Rice, UTAustin, UCB, LLNgaiEaats

Parallel Ef_fic_:ienc

GASNet Asynchronous One-Sided Communication Aids In
Performance Portability and Scaling for NWChem

* Production chemistry code
- 60K downloads world wide
- 200-250 scientific application
publications per year
- Over 6M LoC, 25K files

0 512 1024 1536 2048
Cores

NWChem

credi:nwchem-sw.r - 3000 -
« New version on GASNet TSP
— Improved performance / portability - *%
 Corvette XStack Project 2 5000 -
— Dynam ' ision £
- S 1500 -
q;;j g" 1000 —_—
;_*53; 500

Hierarchical machines and Applications

* Hierarchical memory

model may be necessary
ggg%g (what to expose vs hide)
- Two approaches to

§
|

« Option 1: Dynamic parallelism creation (e.g., Chapel)
- Recursively divide until... you run out of work (or hardware)
- Runtime needs to match parallelism to hardware hierarchy

 Option 2: Hierarchical SPMD with “Mix-ins” (e.g., UPC++)
- Hardware threads can be grouped into units hierarchically

- Add dynamic parallelism with voluntary tasking on a group
- Add data parallelism with collectives on a group

