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Interactions with ExMatEx 

• ExMatEx team has been great – very proactive and 

responsive 

- Collaborathon at Berkeley Lab in March 

- Identified a problem (Susan Mniszewski / Kathy / 

Penporn Koanantakool) 

- Talk with summer students at LLNL in July 

• MiniApps 

- Have used Lulesh for UPC++, Habanero,… 

- For DEGAS, realistic global communication is 

important, e.g., the “previous simulation DB” 

- DEGAS: make your HPC machine an HPD machine 

 



DEGAS: Dynamic Exascale Global Address Space 

Hierarchical Programming 

Models 

Communication-Avoiding 

Libraries and Compilers 

Adaptive Interoperable 

Runtimes 

Lightweight One-Sided 

Communication 

Communication-avoiding algorithms generalized to 

compilers, and communication optimizations in PGAS 
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UPC++:  PGAS sharing; SPMD control with “Mixins” 

• UPC++ uses templates (no compiler involved) 
 shared_var<int> s;       // int in the shared space 
 global_ptr<LLNode> g;  // pointer to shared space 
 shared_array<int> sa(8); // array in shared space 

• Supports possible trend toward PGAS on a chip 

• Default execution model is SPMD, but with optional async 

 async(place)(Function f, T1 arg1,…); 
 wait();     // other side does poll() 

 DEGAS 
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Titanium Arrays in UPC++ 
Amir Kamil, Shan Hongzhang, and Yili Zheng 

• The UPC++ array library has multidimensional arrays with different 

“views” for slicing, shrinking, and arbitrary index (not 0 or 1-based) 

• The performance is close to that of a version that explicitly 

packs/unpacks (bulk) and to MPI 

• The flat (no OpenMP) version is faster than hybrid 

 

 

5 

ndarray<double, 3, global> gridB = bArrays[i, j, k]; 

gridB.async_copy(gridB); 
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6 

Domain-Specific Scheduling Structures 

• Easy: Set of ready tasks 

 

 

• Medium: Tasks have known 

relationship (task graph) 

 

 

 

Chains        Trees    General Graphs 

• Hard: Task structure is not 

known until runtime 

Domain decomposition 

(loops over space) without 

dependences 

 

Chains: Stencils, SPMV-

based methods 

Trees: Divide-and-conquer 

algorithms 

Graphs: Direct solvers, 

e.g., dense and sparse LU 

Trees: Search 

Graphs: Discrete events 

Work-stealing task queue, semi-static DAG scheduling, 

dynamic DAG scheduling are different scheduling data 

structures appropriate for different application scenarios 



  

Resilience in a Distributed Exascale GAS 
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• Resilience strategy: System to Application, GAS-specific 

- Affinity-aware BLCR at NODE-level 

- Consistency coordination at RUNTIME-level 

- Containment domains at APP/LIB-level 

• Recent progress 

– GAS-specific CDs (semantics and interfaces, e.g UPC++ API) 

– Affinity-aware BLCR prototyped   50% speedup! 

– Consistency coordination designed 

• Sane, scalable resilience! 

Default BLCR 
Affinity-Aware BLCR 

Containment domains GAS semantics 

• Strict vs Relaxed 

• Relaxed 

- Comm. Logs  

- Dependencies 

- Data exchange vs. 

  Actual comm. 

 



• Code generation options: compiler, DSL, annotations,… 

- DEGAS CTree uses Python introspection on ASTs (joint with ASPIRE) 

- Domain-Specific Compiler based on LLVM  

• Automatic performance tuning to reach  limits (uses OpenTuner) 

• Roofline modeling to measure limits 

Performance and Energy Node Optimizations 
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Hardware / Operating System 
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100 trials (~2 sec/each): 

Best Energy: 1.41 sec, 38.3 joules 

Best Time: 1.16 sec, 73.8 joules 

DEGAS 



Communication-Optimal Direct Particle 
Interactions: Optimizing Imperfect Loop Nests 

• Direct N-body problems have 2x redundant computation 

for forces (i,j) and (j,i) 

• K-body problems in general have ~ k! redundancy 

 

 

 

 

 

 

• 3-body problems: Provably optimal communication, 

computation (symmetry) and bounded load imbalance 

• Cutoff (<1/3 of other particles) also shown to be optimal 

DEGAS Penporn Koanantakool and K. Yelick 



UPC + Remote Invocation for Scalable Meraculous 
Application used in  Genomics Grand Challenge 

k-mers  

New analysis filters errors using 

probabilistic “Bloom Filter”  

Graph algorithm scales to 15K cores on 

NERSC’s Edison using DEGAS language 

rather than shared memory hardware 

contigs 

Future work: Scaffolds using Scalable Alignment 

Human: 44 hours to 20 secs 

Wheat: “doesn’t run” to 32 secs 

x 

x 

New fast I/O using SeqDB over 

HDF5 

reads 

Meraculous Assembly Pipeline 

Dynamic Exascale Global Address Space project,  

joint work JGI, Early Career and Mantissa 

DEGAS 

Parallel Meraculous uses UPC  

• Tera- to petabtye “shared” memory 

• Combines with new algorithms to 

anchor 92% of wheat chromosome 

• Cray XC30 at NERSC (Edison) is 

sufficient to assemble the World’s 

biomedical sequencing output 

Meraculous assembler is used in 

production at the Joint Genome Institute 

• Wheat assembly is a “grand challenge”  

• Hardest part is contig generation  (large 

in-memory hash table) 



UPC++ Asynchronous Remote Execution                       
Enables Scalable Data Fusion 

Dynamic Exascale Global Address Space from LBNL, Rice, UTAustin, UCB, LLNL 
11 DEGAS 

PGAS before X-Stack 

• Asynchronous remote put/get  

• Good locality control and scaling          

         E.g. *p = … or   … = a[i];ç 

New: Asynchronous invocation 

• Event-driven execution & load balancing 

• Hierarchical synchronization and places 

finish {  … async f (x)…}  

• Seismic modeling for energy applications 

“fuses” observational data into simulation.   

• PGAS illusion of scalable shared memory to 

construct matrix and measure data “fit”  

• New UPC++ dialect supports PGAS libraries; 

future distributed data structure library 

Cores: 48       192      768        3K       12K          



GASNet Asynchronous One-Sided Communication Aids in 
Performance Portability and Scaling for NWChem 

• Production chemistry code 
- 60K downloads world wide 

- 200-250 scientific application 

publications per year 

- Over 6M LoC, 25K files 
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Performance Analysis and Optimizations of NWChem

• High-performance 

computational chemistry code 

 Flagship DOE chemistry software 

 Developed at PNNL, LBL 

• 60K downloads world wide 

• 200-250 scientific application 

publications per year 

• Over 6M LoC, 25K files 

• Internal tasking model, memory 

management, and application 

checkpoint/restart. 

• Execution on 100K+ processors

2

NWChem

credit:nwchem-sw.org
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• New version on GASNet  
– Improved performance / portability 

• Corvette XStack Project 
– Dynamic barrier elision 



Single Program Multiple Data 

(SPMD) is too restrictive 

Hierarchical machines and Applications 

• Option 1: Dynamic parallelism creation (e.g., Chapel) 

- Recursively divide until… you run out of work (or hardware) 

- Runtime needs to match parallelism to hardware hierarchy 

• Option 2: Hierarchical SPMD with “Mix-ins” (e.g., UPC++) 

- Hardware threads can be grouped into units hierarchically 

- Add dynamic parallelism with voluntary tasking on a group 

- Add data parallelism with collectives on a group 
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• Hierarchical memory 
model may be necessary 
(what to expose vs hide) 

• Two approaches to 
supporting the 
hierarchical control 


