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Adaptive sampling: improved mechanics without undue
computational expense - Taylor (fcc) and now VPSC (hcp):
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Previous Barton’s et al. work: Arsenlis et al., CMAME, 2006; Barton et al., IJP, 2008; Knap et al.,
IUNME, 2008; Bernier et al., JEMT, 2008; Barton et al., IINME 2011.

AS-VPSC new work: N.R. Barton, J.V. Bernier, R.A. Lebensohn and D.E. Boyce: “The use
of discrete harmonics in direct multi-scale embedding of polycrystal plasticity”,
Computer Methods in Applied Mechanics and Engineering 283, 224-242 (2015).




Adaptive Sampling builds response
on the fly

= Coarse scale model queries database for fine-
scale material response

= |f possible, approximate
response from past
evaluations

= Otherwise petfdm g "
scale evaluation ™"

= Fine-scale
evaluations grow
database

AS Database




Speedup and error control are well behaved

= 250X speedup: drawing, Taylor, with o | i

512 grains at the fine-scale

= Full evaluation simulation: roughly
2.3 processor-years

cumulative evaluation fraction
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Low symmetry and low-SFE cubic single crystals often
twin, substantially affecting polycrystal response

HCP Metals: Zr (Nuclear), Ti (Aero), Mg (Auto), Be (defense):

Rapid texture changes,

Slip: Twinning: anisotropic hardening:
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ViscoPlastic Self-Consistent (VPSC) formulation
Lebensohn and Tome, Acta Mater (1993)

= VPSC model: ->
Eshelb
+ sglu(:iox
>
HEM
= VPSC vs Taylor: te

Unlike under Taylor model, each grain deform differently according to its
directional properties.

= VPSC code:

Distribution version: widely used in Universities, Laboratories and Industry.
= VPSC-based Abaqus UMAT:

Available (Segurado, Lebensohn, Tome, IJP, 2012), based on “full evaluation”.
s Material systems studied with VPSC:

Metals: Al-alloys, Cu-alloys, Zr-alloys, Ti-alloys, Mg-alloys, Be, Ni-alloys, steels,
U-alloys, etc. Geomaterials: ice, calcite, quartzite, halite, olivine, etc. Polymers:
Polyethylene




VPSC-Abaqus prediction of bending of rolled Ti bars

Eglin’s Ti plate, orthotropic texture (*): Uniaxial tests: anisotropic, tension # compres (twinning!) (*):
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VPSC-Abaqus (green symbols) vs experimental
cross-sections (photographs) (**):
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Previous AS implementation (Taylor) employed a
simple fine-scale state description

M O N,

= Scalar hardness variable(s) H = {h, ho}
 no texture variation or evolution beyond rigid rotation

« =10 dimensional sampling space

« adequate for initial anisotropy, strain localization, pressure and
temperature sensitivity

AS-VPSC makes use of a more expansive fine-scale state description

H = {h17h27h37"'7A’ij’Ck }

P ™

grain shape texture




Texture (ODF) evolution follows from standard
conservation equation, and allows for twinning

Conservation equation: % + div(pv) = ©
Weak form: Jr (26 + ¢div(pv)) du = Jr (26— pv - V) du ¥
Time discretization: % ~ (i1 — pn) /At

Forward-Euler integration:

Jr Prrr9dp = [ (pnd + (AL)(ppv - Vo + ©,,0)) dp

Spatial discretization, no twinning: P41 = pn, + L_lG(ﬁnV)At

Twinning operators constructed similarly: - (L.g) = [ f(r)g(rry)du

Or using orthonormal basis functions:  p = >_; ¢; H; C; = fR pH;du

% = Jr %Hid/‘ — fR(@ — div(pv))Hydp = Jrpv -VHdu+ [, OH;du



Pre-computation is unfeasible:
Even reducing to a small (coarse) harmonic
basis, computation time is daunting

= VVPSC calculation takes =1 second

= Evaluation results depend on current texture, so
need to span space of harmonic basis and
deformation conditions ... say 80 evaluations, or
104% processor-years

:); — fy(7_',«, Hs P, 9) H — {hh h27 h37 "'7Aijack7vtw}

= But a given simulation samples a comparatively low-
dimensional manifold in this high-dimensional
space!



Discrete harmonics offer an

appealing basis

Spherical harmonics are eigenfunctions of
the negative Laplacian on the n-sphere:

—Au = \u
Weak form:

[VuVo=M\[up, Voo

Discrete harmonics satisfy the generalized
eigenvalue problem:

Hu = )\Lu

eigenvalue
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Twinning operators amount to non-
local source/sink relationships

= Twinning operators involve the construction of modified 2-form
“mass” (L-2 inner product) matrices:

[+ (Lg) = Jg f(r)g(rry)dp

= Example: image of Gaussian at the origin under six twinning operators




Uniaxial deformation to 25% strain
illustrates convergence
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L, norm of difference with direct evolution strength measure (MPa)




Discrete aggregate results agree with
direct continuous evolution methods
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Even under monotonic loading,
sampling provides benefit
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Example application — four-point
bend of textured titanium

= |nitial texture from pole figures
= Project onto harmonics to get initial coefficients
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axial stress magnitude (MPa)

Harmonic-based scheme captures
salient features of the response

= Compared to (points) PTR scheme with many more degrees of
freedom & distinct hardening in each grain

= Do not expect complete agreement — models employ different
assumptions
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Four-point bend results demonstrate
utility in component-scale simulations
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Twin fraction: tension-
compression
asymmetry

Axial stress

Shape of cross-sections for two different bend orientations — agree with
published results (Knezevic et al., Mat. Sci. Eng. A, 2013)
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Summary

Adaptive sampling working with more detailed state descriptions:
« ODF expansion with 10s of terms
« Maintains benefit from sampling

Convergence versus expansion order is well behaved

Gross texture evolution from twinning is captured

e

VPSC derivatives: in parallel on remote processes G = Jrpv-VHdu+ [z ©Hdp

AS-VPSC improves AS-Taylor accounting for texture evolution, p =2 ciH;
twinning effects.

ALE3D-AS-VPSC (this work) vs COEVP-AS-VPFFT (ExMatEx
scale-bridging app):

« homogenization-based model (VPSC) implies no fine-scale
spatial resolution, allowing us to account for microstructure

evolution by solving a PDE (flux equation with source and sinks)
for ODF.

- with VPFFT we still need to find appropriate and numerically
tractable microstructure representation for AS.

Do we want to pursue a COEVP-AS-VPSC scale-bridging app?



