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Previous Barton’s et al. work: Arsenlis et al., CMAME, 2006; Barton et al., IJP, 2008; Knap et al., 
IJNME, 2008; Bernier et al., JEMT, 2008; Barton et al., IJNME 2011. 

AS-VPSC new work: N.R. Barton, J.V. Bernier, R.A. Lebensohn and D.E. Boyce: “The use 
of discrete harmonics in direct multi-scale embedding of polycrystal plasticity”, 
Computer Methods in Applied Mechanics and Engineering 283, 224-242 (2015). 

Adaptive sampling: improved mechanics without undue 
computational expense - Taylor (fcc) and now VPSC (hcp): 
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§  Coarse scale model queries database for fine-
scale material response 

§  If possible, approximate 
response from past 
evaluations 

§  Otherwise perform fine 
scale evaluation 

§  Fine-scale  
evaluations grow  
database 

Adaptive Sampling builds response  
on the fly 

AS Database 

Past fine-scale evaulation 
results; approximation 

models 
Queried points 

Queried point close 
enough for 

approximation 

Fine-scale 
evaluation at this 

query 



Speedup and error control are well behaved 
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§  250X speedup: drawing, Taylor, with 
512 grains at the fine-scale 

§  Full evaluation simulation: roughly 
2.3 processor-years 

•  N:  fine-scale queries 
•  n:  fine-scale evaluations under AS 
•  W:  fine-scale work 
•  w:  AS work in lieu of fine-scale evaluation 
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Slip: Twinning: 

Slip: Twinning: 
HCP Metals: Zr (Nuclear), Ti (Aero), Mg (Auto), Be (defense):   

alpha-U, orthorhombic:   

Rapid texture changes, 
anisotropic hardening: 

Strong anisotropy, tension-
compression asymmetry: 

TTT 

IPC 

TTC 

IPT FCC, BCC, low SFE, high strain-rate:   

Slip: Twinning: 

Low symmetry and low-SFE cubic single crystals often 
twin, substantially affecting polycrystal response 



ViscoPlastic Self-Consistent (VPSC) formulation 
Lebensohn and Tome, Acta Mater (1993) 

n  VPSC model: 

n  VPSC vs Taylor: 

Unlike under Taylor model, each grain deform differently according to its 
directional properties. 

n   VPSC code: 

Distribution version: widely used in Universities, Laboratories and Industry. 

n   VPSC-based Abaqus UMAT: 

Available (Segurado, Lebensohn, Tome, IJP, 2012), based on “full evaluation”. 

n  Material systems studied with VPSC: 

Metals: Al-alloys, Cu-alloys, Zr-alloys, Ti-alloys, Mg-alloys, Be, Ni-alloys, steels, 
U-alloys, etc. Geomaterials: ice, calcite, quartzite, halite, olivine, etc. Polymers: 
Polyethylene 

+ … !

+!

HEM!grain!

≈ Eshelby 
solution!



Eglin’s Ti plate, orthotropic texture (*): 

4-point bending jig: 

TD 

TT 

RD 

4 different configurations: 

Animated simulation: 

VPSC-Abaqus (green symbols) vs experimental 
cross-sections (photographs) (**): 

Uniaxial tests: anisotropic, tension ≠ compres (twinning!) (*): 

(*) Nixon et al. IJP, 2010; (**) Knezevic 
et al, MSE A, 2013 

Different final 3-D shapes: 
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RDC RDT 
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TT direction 

TT direction 

TD direction 

RD direction 

VPSC-Abaqus prediction of bending of rolled Ti bars!



Previous AS implementation (Taylor) employed a 
simple fine-scale state description 

§  Scalar hardness variable(s) 
•  no texture variation or evolution beyond rigid rotation 
•  ≈10 dimensional sampling space  
•  adequate for initial anisotropy, strain localization, pressure and 

temperature sensitivity 

AS-VPSC makes use of a more expansive fine-scale state description 
H = {h1, h2, h3, ..., Aij , ck , vtw}

H = {h1, h2}

grain shape texture 



Texture (ODF) evolution follows from standard 
conservation equation, and allows for twinning 

Conservation equation: 

Time discretization: 

Spatial discretization, no twinning: 

Weak form: 

Forward-Euler integration: 

Or using orthonormal basis functions: 

Twinning operators constructed similarly: 

dci
dt =

R
R

@⇢
@tHidµ =

R
R(⇥� div(⇢v))Hidµ =

R
R ⇢v ·rHidµ+

R
R ⇥Hidµ



§  VPSC calculation takes ≈1 second 
§  Evaluation results depend on current texture, so 

need to span space of harmonic basis and 
deformation conditions … say 860 evaluations, or 
1046 processor-years 

§  But a given simulation samples a comparatively low-
dimensional manifold in this high-dimensional 
space! 

Pre-computation is unfeasible:  
Even reducing to a small (coarse) harmonic 
basis, computation time is daunting 

H = {h1, h2, h3, ..., Aij , ck , vtw}
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Discrete harmonics offer an 
appealing basis 

Increasing degree  

Spherical harmonics are eigenfunctions of 
the negative Laplacian on the n-sphere: 

Weak form: 

Discrete harmonics satisfy the generalized 
eigenvalue problem: 



§  Twinning operators involve the construction of modified 2-form 
“mass” (L-2 inner product) matrices: 

 
§  Example: image of Gaussian at the origin under six twinning operators 

Twinning operators amount to non-
local source/sink relationships  



Uniaxial deformation to 25% strain 
illustrates convergence 

L2 norm of difference with direct evolution 

Direct evolution with full DOF: 

0.160327 0.233312 0.149172 0.234315 0.466554 0.468057 

1645.63 

1641.73 1624.75 1644.25 1624.98 1635.77 1627.46 
strength measure (MPa) 
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Discrete aggregate results agree with 
direct continuous evolution methods 

Direct 
evolution 

Discrete 
aggregate 



Evaluation fraction < 0.1 

Even under monotonic loading,  
sampling provides benefit 



§  Initial texture from pole figures 
§  Project onto harmonics to get initial coefficients 

Example application – four-point 
bend of textured titanium 

Nixon, Lebensohn, Cazacu, & Liu, 
Acta Mat., 2010 0 to 7.5 

(0001)

0 to 4 

{101̄0}
TD TD 

RD 



§  Compared to (points) PTR scheme with many more degrees of 
freedom & distinct hardening in each grain 

§  Do not expect complete agreement – models employ different 
assumptions 

Harmonic-based scheme captures 
salient features of the response 



Four-point bend results demonstrate 
utility in component-scale simulations 
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Shape of cross-sections for two different bend orientations – agree with 
published results (Knezevic et al., Mat. Sci. Eng. A, 2013) 
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§  Adaptive sampling working with more detailed state descriptions: 
•  ODF expansion with 10s of terms 
•  Maintains benefit from sampling 

§  Convergence versus expansion order is well behaved 

§  Gross texture evolution from twinning is captured 

§  VPSC derivatives: in parallel on remote processes 

§  AS-VPSC improves AS-Taylor accounting for texture evolution, 
twinning effects. 

§  ALE3D-AS-VPSC (this work) vs COEVP-AS-VPFFT (ExMatEx 
scale-bridging app):  
•  homogenization-based model (VPSC) implies no fine-scale 

spatial resolution, allowing us to account for microstructure 
evolution by solving a PDE (flux equation with source and sinks) 
for ODF. 

•   with VPFFT we still need to find appropriate and numerically 
tractable microstructure representation for AS. 

§  Do we want to pursue a COEVP-AS-VPSC scale-bridging app? 

Summary 

dci
dt =

R
R ⇢v ·rHidµ+

R
R ⇥Hidµ


